Self-Dependent Justification Without Circularity

Tomoji Shogenji

ABSTRACT

This paper disputes the widely held view that one cannot establish the reliability of a belief-forming process with the use of beliefs that are obtained by that very process since such self-dependent justification is circular. Harold Brown ([1993]) argued in this journal that some cases of self-dependent justification are legitimate despite their circularity. I argue instead that under appropriate construal many cases of self-dependent justification are not truly circular but are instances of ordinary Bayesian confirmation, and hence they can raise the probability of the hypothesis as legitimately as any such confirmation does. I shall argue in particular that despite its dependence on perception we can use naturalized epistemology to confirm the reliability of a perceptual process without circularity.

1 Introduction

It is commonly held by epistemologists that we cannot establish the reliability of a belief-forming process with the use of beliefs that are obtained by that very process since such self-dependent justification is circular. This paper disputes this view. There have been some philosophers who defended circular reasoning so long as it occurs in proper contexts (e.g., Robinson [1971]; Walton [1991]); it has also been suggested that ‘epistemic circularity’ in which the conclusion is presupposed in the argument, is not as crippling as ‘logical circularity’ in which the conclusion appears as one of the premises (Alston [1989], pp. 326-9, [1993], pp. 15-7). However, most of those who embrace circular reasoning still stop short of claiming that circular reasoning is an effective polemical tool in the dialectic context (e.g., Robinson [1971]; Alston [1989], p. 334). For example, we cannot use circular reasoning to convince the sceptic that his view is incorrect. This is because useful as it may be in other respects, circular reasoning does not raise the probability of its conclusion.¹ I accept this diagnosis. I believe, however,
that under appropriate construal many cases of self-dependent justification are not truly circular but are instances of ordinary Bayesian confirmation, and hence they can raise the probability of the hypothesis as legitimately as any such confirmation does. I shall argue in particular that despite its dependence on perception we can use naturalized epistemology to confirm the reliability of a perceptual process without circularity.

2 The Problem of Self-Dependent Justification

This section delineates the framework of our discussion and describes the problem of self-dependent justification. The framework is Bayesianism, which I take to be a generalization of hypothetico-deductivism. According to hypothetico-deductivism, confirming a hypothesis requires two steps. First, we use deductive reasoning to derive an observable consequence from the hypothesis, usually with the help of some background beliefs. We will then set up an appropriate environment in which we should observe the derived consequence. If indeed the predicted event is observed, the hypothesis is confirmed, where ‘confirmation’ means increase in probability by observation. Needless to say, the hypothesis to test must be consistent with the background beliefs, and further it must be indispensable in making the prediction—i.e., if the observable consequence in question is derivable from the background beliefs alone without using the hypothesis, then the correctness of the prediction renders no support for the hypothesis. Thus, hypothetico-deductive confirmation (HDC for short) works as follows:

Hypothesis H is confirmed by observation O relative to background beliefs B if

1. H is consistent with B, and
2. H together with B entails O, which B alone does not entail.

HDC is limited in its application since empirical theories seldom entail the occurrence of particular observable events with certainty even with the help of background beliefs. Consequently, we need the following probabilistic variant of HDC, which I call ‘hypothetico-inductive confirmation’ (HIC for short):

Hypothesis H is confirmed by observation O relative to background beliefs B if

1. the probability of H & B is positive, and
2. the probability of O given H & B is higher than the probability of O given B alone.

HIC is a formulation of Bayesian confirmation, and it will serve as the framework of our discussion. To give an illustration, if an occult theory predicts with sufficient specificity that a sizable asteroid is likely to hit the earth at a particular time in the future, while we have no other reason to expect it to happen, then the actual occurrence of the event will confirm the occult theory in the sense that the theory now deserves a higher probability
than before. If we are lucky, repeated applications of HIC in diverse environments will incrementally raise the probability of some hypothesis, while lowering the probabilities of its competitors that are incompatible with it.

Some remarks are in order before we use this framework to address the problem of self-dependent justification. There are well-known objections to hypothetico-deductiveism and Bayesianism. I do not take them lightly, but I shall not discuss them in this paper except the so-called tacking problem in Section 5, which is directly relevant to my argument. My objective in this paper is to show that many cases of self-dependent justification are no worse than ordinary cases of HIC. Of course, if hypothetico-deductiveism and Bayesianism turn out to be wildly misguided, then my defence of self-dependent justification will be useless; but it is fair to say at this point that these approaches probably capture the main ingredients of confirmation, and that their central ideas are likely to remain in some form or other in a correct account of confirmation if there is any. I am therefore optimistic that with appropriate modifications my defence of self-dependent justification below will survive even if HIC proves deficient.

The framework of HIC allows us to capture the circularity problem of self-dependent justification in a precise way. I will describe it using naturalized epistemology as an example. Many philosophers doubt that scientific investigations of our perceptual processes can establish their reliability because any empirical science—be it cognitive science or evolutionary biology—is built on our perceptual beliefs. The point here is not that we should avoid using the hypothesis in predicting a certain observation. Any HIC does that, and it is as legitimate as using a hypothesis in deriving a contradiction for reductio ad absurdum. In either case there is no prior assumption that the hypothesis is correct. What makes naturalized epistemology suspect is that we must also use our perception in conducting empirical investigation—i.e., after predicting what we should observe in our perceptual processes from the hypothesis that our perceptual processes are reliable, we would have to rely on the very perceptual processes for observing these processes. It thus appears that we need to make the prior assumption after all that the perceptual processes in question are reliable, as part of the background beliefs of naturalized epistemology. But once we assume this, it follows trivially that our perceptual processes are reliable, regardless of observation. More generally, self-dependent justification looks suspect because it appears the very hypothesis to test is already assumed as part of the background beliefs.

3 Legitimacy of Self-Dependent Justification

It seems as if self-dependent justification is rigged since the truth of the hypothesis is ensured by the background beliefs. It has been pointed out, however, that the results of self-dependent justification are not always positive. For example, Michael Friedman ([1979], p. 371) states:

Just because the facts about the world that we appeal to in attempting to justify scientific method are themselves obtained by scientific method, it by no means
follows that these facts will actually justify scientific method, that they will entail its reliability.

It is quite possible, in other words, scientific investigation ends up discrediting the method of science itself—we simply do not know in advance what the investigation will turn up.

It has also been pointed out that self-dependent testing of a scientific theory can disconfirm the theory. In other words, using a theory for interpreting observational data does not guarantee that the observation so interpreted will confirm that theory. Harold Brown ([1993], [1994]) demonstrated this with an actual case from astronomy. The case concerns superluminal velocities, which are possible in Newton’s physics, but impossible in Einstein’s. I will only mention essential points, leaving details to Brown’s papers. If one uses Einstein’s special relativity in calculating the recession velocity of a celestial body from its redshift, then the velocity never exceeds the speed of light no matter what redshift we observe. Consequently, the observation of the redshift fails to be a genuine test of superluminal recession velocities. This is to be expected—if the calculation is based on a theory that prohibits superluminal velocities, then it is no surprise that we never discover superluminal velocities. What is quite unexpected, however, is the discovery that the relative velocity between two celestial bodies as determined by their changing angular separation and their distances from us—the latter of which is determined by their relativity-based recession velocity—turned out to be superluminal in some cases. In other words, special relativity is undermined by the measurement based in part on special relativity itself.

The case shows that failure in self-dependent justification is not a mere conceptual conceivability but a realistic possibility. Thus, Brown ([1993], p. 555) states:

[...] the relation between observation and theory must be determined on a case-by-case basis, rather than by resting content with a general philosophic argument.

When we look at specific cases we do find situations in which a particular test is blocked by theory-dependence, but we also find cases in which this does not occur.

In what follows I shall call a theory ‘F-B disconfirmable’ (short for ‘Friedman-Brown disconfirmable’) and the relevant test its ‘F-B test’ when the theory is disconfirmable (i.e., its probability can be lowered) by an empirical test which relies on that theory itself for interpreting observational data.

F-B tests exist. The question is how we should use them. There is no doubt that we should lower the probability of any hypothesis that fails its F-B test. Recalcitrant F-B disconfirmation forces us to modify or abandon the original hypothesis. What is more important for our purpose is a situation where the hypothesis survives its F-B test. Does the hypothesis then deserve a higher probability than before?

There is disagreement on this point among those who recognize the significance of F-B tests. Referring to the F-B test of superluminal velocities, Brown ([1994], p. 409) contends that ‘if such a test were to yield a result in conformity with relativity, this would seem to be a fair confirmation.’ This prompts Brown ([1994], p. 408) to claim that ‘whether a circular argument is viciously circular depends on a variety of specific
contextual features.’ William Alston ([1993], p. 139), on the other hand, rejects F-B tests as means of raising the hypothesis’s probability:

Since even significant self-support exhibits epistemic circularity, I will refrain from taking it to be an independent reason for supposing the doxastic practice in question to be reliable. [...] I am taking significant self-support to function as a way of strengthening the prima facie claim of a doxastic practice to a kind of practical rationality, rather than as something that confers probability on a claim to reliability.

I believe both Brown and Alston are correct partially. Brown holds that F-B tests can confirm a theory despite its circularity because he believes (correctly in my view) that any theory that survives possible disconfirmation is confirmed; while Alston holds that F-B tests cannot confirm a theory because he believes (also correctly in my view) that no circular tests can confirm a theory. My own view is that F-B tests are not circular—not even virtuously circular.9

I shall defend this view in the next section; but before doing so, I want to dispel any doubt that F-B tests can confirm a theory. Suppose hypothesis H is F-B disconfirmable by observation O relative to background beliefs B. This means that the probability of H given O & B is lower than the probability of H given B alone. It then follows straightforwardly by standard probability calculus that the probability of H given ¬O & B is higher than the probability of H given B alone.10 In other words, not having disconfirming observation O where we could have raises the hypothesis’s probability. Thus, self-dependent justification by an F-B test is a legitimate way of raising the probability of the hypothesis. I now argue that this is because F-B tests are not truly circular.

4 Non-Circularity of Self-Dependent Justification

Let us examine the reasoning of F-B tests more closely. The peculiarity of F-B tests is the need for hypothesis H itself in interpreting observational data. It appears thus H must play a dual role—the role of the hypothesis to test and the role of a background belief. I want to show first that this is not true.

To avoid notational confusion, I will let ‘B*’ refer to the proper background beliefs, excluding hypothesis H to test, while the full background beliefs, B, may include both B* and H. What we face in an F-B test, it appears, is a situation where observation O confirms (raises the probability of) hypothesis H given the full background beliefs B* & H, which should be impossible by clause (2) of the requirement for HIC since H is already assumed in the background beliefs prior to observation O. However, a different picture emerges when we go back to HIC’s basis, viz., O’s two conditional probabilities, Prob(O|H & B) and Prob(O|B). In an unproblematic case of HIC, where H does not appear in the background beliefs, we compare Prob(O|H & B*) and Prob(O|B*). If the former is higher than the latter, in other words, if H makes O more likely than does B* alone, then observation O confirms H. In an F-B test, on the other hand, the full
background beliefs include H, and hence we need to replace ‘B*’ above with ‘B* & H’.
As a result, the first of the two conditional probabilities becomes Prob(O|H & B* & H).
Of critical importance here is that the second occurrence of ‘H’ in this conditional is
redundant—i.e., Prob(O|H & B* & H) is just the same as Prob(O|H & B*). This reveals
that H need not play the split role between the hypothesis to test and a background belief;
we can take H to be playing the role of the hypothesis _twice_ in predicting the probability
of observation O.¹¹

The elimination of the second occurrence of H from the first conditional does not
by itself make an F-B confirmation acceptable. For, if we replace B with B* & H in the
second conditional as well, we end up with Prob(O|B* & H) there, which is just the same
as the reduced first conditional, Prob(O|H & B*). Obviously, we cannot confirm anything
by comparing two identical conditionals. Note, however, that once we take H to be
playing the role of the hypothesis twice, instead of the split role between the hypothesis
and a background belief, the proper second conditional to compare is not Prob(O|B* &
H) but Prob(O|B*). For, H is no longer a part of the background beliefs under this
construal. In other words, we now take B* to be the entire background beliefs and see
whether H, used twice, makes O more likely than does B* alone. This is in fact the same
comparison as we make in an unproblematic case of HIC except that the hypothesis to
test is used twice in predicting the probability of the observation. To conclude, when
examined in terms of O’s two conditional probabilities, which are the basis of HIC, there
is no relevant difference between an F-B test and an unproblematic case of HIC that
makes the former particularly suspect. Thus, F-B confirmation is no more circular than
ordinary HIC; it is as legitimate as any HIC is.

Let us see how this idea works in naturalized epistemology. Our goal is to show
that investigating perceptual process P with the use of that very process can confirm its
reliability without circularity, where ‘P is reliable’ means that beliefs it generates are
very likely to be true. We assume in our background beliefs that perceptual process P,
when it is used in empirical investigation, generates a belief in the perceiver; and that the
perceiver has an introspective access to this belief, which enables her to form a meta-
belief.¹² We also assume that our introspection, memory, etc., which do not depend on
perception, are reliable. We use the following abbreviations:

- **H**: Perceptual process P is reliable.
- **O**: S believes that perceptual process P is reliable.
- **B***: When it is used in empirical investigation, perceptual process P generates a
 belief in the perceiver, to which she has an introspective access to form a
 meta-belief; her introspection, memory, etc., which do not depend on her
 perception, are reliable.

Since the meta-belief that O, is acquired by introspection, it is very likely to be true by
B*. In other words, the perceiver can claim with justification that she has the belief that P
is reliable. This serves as the observational basis in her confirmation of H. The apparent
problem is that the perceiver’s first-order belief in P’s reliability remains unjustified
unless she assumes further that the perceptual process responsible for its generation is
reliable, and this gives rise to the suspicion that she need to assume H for confirming H
itself.
As was explained above, however, this suspicion can easily be dispelled by returning to HIC’s basis, viz., O’s two conditional probabilities, Prob(O|H & B* & H) and Prob(O|B* & H). We eliminate the redundant second occurrence of H from the first conditional to obtain Prob(O|H & B*), which in turn allows us to replace the second conditional with Prob(O|B*). When seen in this form, naturalized epistemology is no different from an ordinary case of HIC. We have the false impression of circularity because H plays the role of the hypothesis twice—first, in deriving the reliability of perceptual process P to be observed in naturalized epistemology, and then in deriving the reliability of perceptual process P to be used in naturalized epistemology.

When we compare the two conditional probabilities, we do find that Prob(O|H & B*) is higher than Prob(O|B*). For, with hypothesis H, O is very likely to be true because if perceptual process P is reliable, then it is very likely that the perceiver comes to believe that P is reliable when she observes it with the help of reliable perceptual process P. Without hypothesis H, on the other hand, she should expect perceptual process P to generate any of a variety of beliefs, and therefore the probability that it happens to generate the belief that P is reliable is very low. Thus, when she does come to believe that P is reliable, P’s reliability is confirmed by HIC.

5 Objections and Replies

I wish to discuss two possible objections to my interpretation of F-B tests. One of them concerns the so-called tacking problem of hypothetico-deductivism, while the other charges that my non-circular reconstrual of F-B tests legitimizes genuine cases of circularity. Let us start with the tacking problem. It is well known that in the absence of some restriction hypothetico-deductivism has a counterintuitive consequence—viz., whenever observation O confirms hypothesis H, it also confirms conjunction H & P, where P is any statement that is consistent with H and background beliefs B (cf. Glymour [1980], pp. 30-9). For example, if the deflection of starlight confirms general relativity, then it also confirms the conjunction of general relativity and creationism. This is because if general relativity entails the deflection of starlight, then obviously the conjunction of general relativity and creationism also entails the deflection of starlight; as a result, HDC allows the deflection of starlight to confirm the conjunction of general relativity and creationism. The same problem arises for HIC as well; for, if H raises O’s probability, then H & P also raises O’s probability; and hence by HIC if O confirms H, it should also confirm H & P. To make things worse, if one accepts further the so-called Consequence Condition that O confirms logical consequences of whatever it confirms, then O confirms P all by itself since P is a logical consequence of H & P. This means that HIC with the Consequence Condition allows practically any observation to confirm any hypothesis; for example, the deflection of starlight confirms creationism.

As I stated earlier, the goal of this paper is to show that many cases of self-dependent justification are no worse than ordinary cases of HIC; and therefore, I need not defend HIC itself. However, some remarks are in order since my reconstrual of F-B tests relies on the feature of HIC that seems responsible for the tacking problem. The tacking problem arises from the reversal of the supporting relation between hypothesis and
observation—i.e., O supports H & P if H & P supports O—and it is the same reversal of the supporting relation that allows the elimination of H from the background beliefs in my reconstrual of F-B tests. Thus, to remove the suspicion that my account relies on a questionable feature of HIC, I want to address the tacking problem.

In order to circumvent the tacking problem, some defenders of hypothetico-deductivism introduce an additional condition, requiring essentially that the hypothesis to test be minimal so that H & P will be disqualified because of superfluous P. This proposal has met strong criticism (Glymour [1983]) and I do not think such a move is necessary so long as we understand confirmation as an increase in probability by observation. It may sound strange to say, ‘O confirms H & P’ where P is irrelevant to O, but by standard probability calculus increase in H’s probability must be accompanied by increase in H & P’s probability when P is irrelevant to H—i.e., when H and P are probabilistically independent. This means that an adequate theory of confirmation must allow tacking as long as we understand confirmation as an increase in probability by observation. Note also that an increase in H & P’s probability by O may occur solely due to an increase in H’s probability without any change in P’s probability; and hence O can confirm H & P without confirming P. Thus, as long as we understand confirmation as an increase in probability by observation, we must reject the Consequence Condition. In short, tacking is not a problem at all. It appears problematic merely verbally (cf. Horwich [1978], p. 105, [1980], p. 701, [1983], pp. 55-6).

Let us turn to the second objection that my non-circular reconstrual of F-B tests legitimizes genuine cases of circularity. Some critics may note that the procedure used in the preceding section will reconstrue any theory-dependent test in a non-circular way, which is prima facie puzzling because there are cases in which theory-dependence genuinely blocks an empirical test, as in the relativistic testing of superluminal recession velocities cited by Brown. Thus, the critics may argue that my reconstrual cannot be correct because it legitimizes all cases of self-dependent justification, while some of them are genuinely circular. In response to this objection I am willing to accept that some self-dependent tests fail to be genuine tests of the hypothesis, but I do not think the failure is due to circularity. In order to understand why some theory-dependent tests fail to be genuine tests of the hypothesis, we need to examine what happens to such cases when we apply to them our procedure of reconstruing the reasoning. To avoid needless complications, we use a non-technical example from ordinary life.

Suppose I receive a phone call from a stranger, who offers an incredible deal; and I start wondering whether it is a telemarketing scam. In order to test the hypothesis, H, that the caller is honest, I ask him the question: ‘Are you telling the truth?’ It appears that this test is ineffective; i.e., even if I receive the positive response ‘Yes, I am telling the truth,’ I cannot assign a higher probability to the hypothesis than before. One tempting explanation of its ineffectiveness is that the observation, O, of the positive response does not raise the probability of hypothesis H unless the caller answers my question honestly; in other words, in order to use O to confirm H, we must assume H in our background beliefs, but supporting H by O & H is circular and hence the test cannot confirm the hypothesis.

Let us apply to this case our procedure of turning a circular reasoning into a non-circular kind. Instead of understanding the supporting relation between H and O in the form of Prob(H|O & B), we pay attention to its reversal, Prob(O|H & B) and compare it
with \(\text{Prob}(O|B) \), as required by HIC. The apparent problem is that we must use \(H \) itself in order to relate \(H \) and \(O \). In other words, background beliefs \(B \) appears to include \(H \) itself, and thus we have \(\text{Prob}(O|H \& B^* \& H) \) and \(\text{Prob}(O|B^* \& H) \) to compare. However, as explained in the preceding section, we can eliminate the redundant second occurrence of \(H \) from the first conditional to obtain \(\text{Prob}(O|H \& B^*) \), which in turn allows us to replace the second conditional with \(\text{Prob}(O|B^*) \). The resulting two conditionals to compare are no different from those in an ordinary case of HIC. There is no circularity in it.

Then why is the test still ineffective? The answer is simple. As in any case of HIC, hypothesis \(H \) must make observation \(O \) of the positive response more likely than do background beliefs \(B^* \) alone, and this requirement is not met in the telemarketing case. For, given the standard background beliefs about dishonest sales people, we expect that the caller will maintain that he is telling the truth *even if he is dishonest*. In other words, unlike an F-B test, in which \(H \) makes \(O \) more likely than does \(B^* \) alone, the reduced background beliefs, \(B^* \), in this case still fully support observation \(O \), making hypothesis \(H \) irrelevant to the prediction of \(O \). Otherwise, i.e., if the honesty of the caller would affect the likelihood of \(O \), then asking whether he is telling the truth would be a good empirical test.\(^{13}\) The upshot is that self-dependent or otherwise, the effectiveness of any HIC hinges on the hypothesis’s positive impact on the probability of the observation, where circularity has no relevance since no empirical tests are irremediably circular. This means that we need an extensive re-evaluation of one of the most common charges in philosophical discourse that the reasoning is circular, because many of the accused reasonings rely on empirical observation and thus are not irremediably circular.

Acknowledgments

An earlier version of this paper was read at APA’s Eastern Division Meeting in December 1996 under the title ‘Non-Circular Justification of Perceptual Beliefs by Naturalized Epistemology’. I would like to thank the commentator Andrew Cling and other participants of the session for their helpful comments. I also received valuable comments and suggestions from Ken Akiba, Harold Brown, Willard Enteman, Hartry Field, Byeong Lee, Sheri Smith, Ernest Sosa and anonymous referees.

Department of Philosophy
Rhode Island College
Providence, RI 02908
USA
tshogenji@ric.edu
References

1 I will discuss the contrary view by Brown ([1994]) in Section 3 below.
2 This way of understanding Bayesianism is not essential for my argument below. Those readers who do not like this view can simply ignore any mention of hypothetico-deductivism. I prefer this way of seeing Bayesianism because it makes clearer the relevance of the so-called tacking problem later in our discussion.
3 More precisely, observation O confirms hypothesis H relative to background beliefs B =def. given B, O raises the probability of H—i.e., Prob(H|O & B) > Prob(H|B).
4 Bayes’s theorem formally ensures that (1) and (2) are sufficient for confirming H by O.
5 In what follows I shall only mention HIC (except in Section 5, where I address the tacking problem) since I take HDC to be its special case, where Prob(O|H & B) = 1.
6 For various views of how naturalized epistemology relates to justificatory epistemology, see Kornblith ([1994], pp. 1-14).
7 We can, of course, use some other perceptual processes than the one presently under investigation, hoping that their reliability will be confirmed elsewhere; but we cannot keep passing the buck of confirmation indefinitely. We must eventually confront the problem of circularity at some point.
The apparent cases of superluminal velocities do not refute relativity outright though they disconfirm it (cast doubt on it). The current consensus among astronomers is that these cases can be accounted for within the relativistic framework.

To be more precise, my view is that for any F-B test there is a non-circular way of understanding it. I do not deny that an F-B test can be circular under an inappropriate construal.

By the following derivation:
\[
\begin{align*}
\text{Prob}(H|O & B) &< \text{Prob}(H|B). \\
\text{Prob}(H & O & B)/\text{Prob}(O & B) &< \text{Prob}(H & B)/\text{Prob}(B). \\
\text{Prob}(H & O & B)/\text{Prob}(H & B) &< \text{Prob}(O & B)/\text{Prob}(B). \\
(\text{Prob}(H & B) - \text{Prob}(H & B & \neg O))/\text{Prob}(H & B) &< (\text{Prob}(B) - \text{Prob}(B & \neg O))/\text{Prob}(B). \\
1 - \text{Prob}(H & B & \neg O)/\text{Prob}(H & B) &< 1 - \text{Prob}(B & \neg O)/\text{Prob}(B). \\
\text{Prob}(H & B & \neg O)/\text{Prob}(B & \neg O) &> \text{Prob}(H & B)/\text{Prob}(B). \\
\text{Prob}(H|\neg O & B) &> \text{Prob}(H|B).
\end{align*}
\]

We can of course take H to be playing the role of a background belief twice if we like, in which case we have no hypothesis to confirm. My point is that there is at least one way of understanding an F-B test that makes it acceptable (as well as many others that make it unacceptable).

Alternatively, we may assume that P generates an appearance state to which the perceiver has an introspective access to form the appearance belief that she is appeared to in a certain manner. The argument below works equally well with this alternative version.

The same point applies to the ‘because he says so’ argument for authenticity in which honesty is not an issue. Hilary Putnam ([1982], p. 7) mentions—with derision—the argument for the Dalai Lama’s infallibility from his (supposedly infallible) statement that he is infallible. Contrary to its appearance the reason for the argument’s failure is not circularity. The argument is undermined by the background belief many of us share that someone in the Dalai Lama’s position would claim (and believe) his infallibility even if he is fallible. If fallibility makes his declaration of infallibility less likely, then his declaration genuinely confirms (raises the probability of) his infallibility.