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Abstract

Let X be a generic hypersurface of degree h in projective space
Pn, n ≥ 4 over the complex numbers. Let d be a fixed natural number.
Let Md(X) be the open sub-scheme of the Hilbert scheme, parame-
terizing irreducible rational curves of degree d on X. In this paper, we
show that if Md(X) 6= ∅, then it is smooth and of dimension

(n+ 1− h)d+ n− 4 ≥ 0. (0.1)

The result directly confirms two conjectures of Voisin:
1. if X is Calabi-Yau of dimension at least 3 and very general,

then the rational curves on X cover a countable union of Zariski
closed subsets of codimension ≥ 2;

2. if X is of general type, then the degree of rational curves on
it is bounded.
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1 Introduction

1.1 Statement

We work with the complex numbers, C. For the statements we use
Zariski topology.
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Theorem 1.1. (Main theorem)
Let Pn be the projective space over C of dimension n ≥ 4. Let f ∈

H0(OPn(h)) be generic, and

X = div(f).

Let Md(X) be the open sub-scheme of the Hilbert scheme, parameterizing
irreducible rational curves of degree d on X.

If Md(X) is non empty, then

(n+ 1− h)d+ n− 4 ≥ 0

and Md(X) is smooth, of dimension

(n+ 1− h)d+ n− 4. (1.1)

Theorem 1.1 does not give a complete structure of rational curves on
generic hypersurfaces, not even the existence. But it has enough information
to confirm Voisin’s conjectures in [4]. Theorem 1.1 shows that

Corollary 1.2. If X is a generic hypersurface of Pn of general type, i.e.,
deg(X) > n + 1, then the degrees of rational curves C ⊂ X have an upper
bound

deg(C) ≤ n− 4

deg(X)− n− 1
. (1.2)

Voisin conjectured that deg(C) is bounded for all n. But the corollary
following from Theorem 1.1 is only valid in the case n ≥ 4. So to complete
Corollary 1.2, we deal with the missing case n ≤ 3 in section 4.

Notice that a Calabi-Yau hypersurface satisfies n+1−h = 0. So Theorem
1.1 says dim(Md(X)) = n− 4. We obtain the corollary.

Corollary 1.3. Let X be a very general Calabi-Yau hypersurface of Pn, n ≥
4. Then the dimension of a parameter space of a family of rational curves
of each degree d on X is ≤ n− 4 provided it is non-empty.

This confirms Voisin’s speculation: rational curves on X cover a count-
able union of Zariski closed subsets of codimension ≥ 2.
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1.2 Outline of the proof

The hypersurfaces in a projective space have three types.
1) Fano, n+ 1 > h,
2) Calabi-Yau, n+ 1 = h,
3) of general type, n+ 1 < h.

We prove the results in two cases accordingly: (I) Calabi-Yau and Fano,
(II) of general type, where (II) follows from (I) by the standard technique
of deformation theory ([3]). But the proof of the case (I), which is the
main proof, is somewhat non standard.1 It sets up the external data for the
matrix algebra to compute the Jacobian matrices of the ALTERNATIVE of
the Hilbert scheme.

1.2.1 Calabi-Yau and Fano

• The setting
In this section we assume n+ 1 ≤ h. The idea, which requires n+ 1 ≤ h,

is to use the matrix algebra to attack the alternative of the Hilbert scheme.
It can be described with the chart:

Alternative
Matrix algebra−−−−−−−−−→ Normal sheaf

Deformation theory−−−−−−−−−−−−→ Hilbert scheme.
(1.3)

The alternative is not new. Let’s see the definition.

Let
S = P(H0(OPn(h)))

be the space of degree h hypersurfaces of Pn. Let

M = (H0(OP1(d))⊕n+1, (1.4)

be the affine space of all (n+1)-tuples of homogeneous polynomials in two
variables of degree d. The open set Md of M has the projectivization iso-
morphic to the Hilbert scheme of regular maps

{[c] ∈ Hombir(P
1,Pn) : deg([c](P1)) = d},

1It overcame the same difficulty as that in Clemens’ conjecture ([1]).
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For the simplicity, we still call c ∈ Md a rational curve, and denote the
rational map [c] : P1 → Pn by the same letter c. So M is not the Hilbert
scheme of rational curves, but we’ll use Md as an alternative to replace
the Hilbert schemeMd. Then the alternative incidence scheme is defined as
follows. Let P ⊂ S be a generic 2-dimensional plane. We have the alternative
triangle to replace the usual triangle of the Hilbert scheme,

ΓP
Pl

��

Pr

!!
P Md

(1.5)

where ΓP is the non-empty alternative incidence scheme of the containment
relation,

{(f, c) ∈ P×Md : c(P1) ⊂ f}
and Pl, Pr are the projections with the dominant Pl. Our observation is that
over the open set OP ⊂ P,

ΓP ∩ (OP ×Md)

ought to be scheme-theoretically isomorphic to the projection

Pr(ΓP ∩ (OP ×Md)).

(which is not so obvious but reasonable). In particular

T(fg ,cg)ΓP ' Tcg
(
Pr(ΓP)

)
(1.6)

for a point (fg, cg) ∈ ΓP with S-generic fg, where “S-generic” means the
genericity in S. This allows us to change the focus to rational curves Pr(ΓP)
(which has a fundamental importance). But over a projective subvariety
W j P the incidence scheme

ΓW = Γ ∩ (W ×Md)

is known to be reducible, and not all components dominate W . Since we are
only interested in irreducible components dominating W , so we’ll use IW to
denote an irreducible component of

Pr(ΓW )

dominating W . If W1 ⊂ W2 ⊂ S, we always take the components with the
containment relation

IW1 ⊂ IW2 .

In particular I{f} for a point f ∈ S is abbreviated as If . Then the observa-
tion (1.6) can be formulated as follows.
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Proposition 1.4.
(1) There is an isomorphism

T(fg ,cg)ΓP ' TcgIP, (1.7)

where (fg, cg) ∈ ΓP is a point with S-generic fg ∈ P. Denote

GP = {c ∈ IP : (f, c) ∈ ΓP and f ∈ P is generic}

By the dominance of Pl, (1.7) is equivalent to

dim
(
Tcg(Ifg)

)
+ 2 = dim

(
TcgIP

)
(1.8)

for cg ∈ GP.
(2) Furthermore

dim
(
Tcg(Ifg)

)
= dimH0(c∗g(TXg)) + 1,

where Xg = div(fg).

Remark Part (2) serves as a transition from the alternative to the nor-
mal sheaf.

After this proposition our focus is shifted to IP. So we can state the key
result.

Proposition 1.5. Assume all notations as above. For cg ∈ GP,

dim(TcgIP) = (n+ 1− h)d+ n+ 2. (1.9)

Remark GP is a constructible set. So cg ∈ GP may not be generic.

The result of Proposition 1.5 for the alternative can be interpreted in
the Hilbert scheme through the normal sheaf over P1 defined as

Ncg/Xg := c∗g(Hom(Icg(P1)/I2
cg(P1),OP1)) (1.10)

where Icg(P1) is the ideal sheaf of the scheme cg(P
1). The interpretation

is the result in Theorem 1.1, so the normal sheaf serves as the bridge con-
necting the alternative and Hilbert scheme. More intuitively we’ll see that
Propositions 1.4, 1.5 imply that the generic fibre of Pl is reduced and has
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dimension (n+ 1− h)d+n. Considering 4 is the dimension of the automor-
phism group of an irreducible rational curve, we obtain the main theorem.

We would like to point out that all propositions can be reformulated in
Hilbert schemes, however the technique of proof can’t.

•• The computation – Differentials of the holomorphic map
Proposition 1.4 is straightforward. So we focus on Proposition 1.5 which

is not straightforward. We’ll formulate it as a calculation of the surjectivity
of the differentials of holomorphic maps. In representation, the sujectivity is
the non-degeneracy of a Jacobian matrix associated to the differential. We’ll
use two holomorphic maps, one of which is called the direct holomorphic map
ν1, the other is called indirect holomorphic map ν2. They are all extrinsic
with respect to the intrinsic Proposition 1.5. Let’s define ν1. Let P be any
2-dimensional plane in S spanned by three non zero points f0, f1, f2. Choose
generic hd+ 1 points ti ∈ P1 (generic in Symhd+1(P1)), and let

t = (t1, · · · , thd+1) ∈ Symhd+1(P1).

We call t or ti, i = 1, · · · , hd + 1 the designated points. In the rest of the
paper, we’ll use the following evaluations in affine coordinates:

(a) fix an affine open set C ⊂ P1, and use ti or t to denote a complex
number in C,

(b) fix an affine space Cn+1 such that P(Cn+1) = Pn, and for c ∈Md,
use c(t) to denote the following image

P1 c→ Pn

↑ ↑
C c|C→ Cn+1\{0}

∈ ∈

t → c(t),

(c) a hypersurface f is a homogeneous polynomial of degree h in n+ 1
variables, i.e. f is a holomorphic function on Cn+1.

Now we we use evaluations in (a), (b), (c) to define polynomials bi(c) in
M as

bi(c) =

∣∣∣∣∣∣
f2(c(ti)) f1(c(ti)) f0(c(ti))
f2(c(t1)) f1(c(t1)) f0(c(t1))
f2(c(t2)) f1(c(t2)) f0(c(t2))

∣∣∣∣∣∣ (1.11)
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for i = 3, · · · , hd+ 1, where c ∈M and | · | denotes the determinant.

Using these polynomials, we define a holomorphic map

ν1 : M → Chd−1

c → (b3(c), b4(c), · · · , bhd+1(c)).
(1.12)

The representation of the Jacobian matrix of the differential (ν1)∗ at a point
cg depends on numerous variables, which we call the Jacobian data

Definition 1.6. (Jacobian data). We defined the Jacobian data to be the
collection of following choices. Intrinsic: P and a point cg ∈ IP; Extrinsic:
a specific basis {f0, f1, f2}, the distinct designated points t of P1, the order
of t, local coordinates of Md, and affine open sets for evaluations in (a), (b),
(c).

Jacobian data is central to the proof. While the surjectivity ν1 depends
on the intrinsic variables only, but the representation of the Jacobian matrix
heavenly depends on extrinsic data. The specialization of Jacobian data
leads to a representation of the Jacobian matrix showing that

Proposition 1.7. If n + 1 ≤ h, then (ν1)∗ is surjective at cg ∈ GP for
generic P.

Proposition 1.7 is the result of manipulating the Jacobian data. For its
application, we should note that Proposition 1.5 follows from Proposition
1.7 because for generic P, the Zariski tangent space TcgIP is the kernel of
(ν1)∗. Let’s see the reason. The incidence scheme

ΓP ⊂ P×Md (1.13)

is defined by hd+ 1 polynomial equations

f(c(t1)) = · · · = f(c(thd+1)) = 0 (1.14)

for the variables (f, c) ∈ P×Md. Then the resultants of the polynomials (in
f, c) in (1.14) after eliminating the linear variable f are∣∣∣∣∣∣

f2(c(ti)) f1(c(ti)) f0(c(ti))
f2(c(tj)) f1(c(tj)) f0(c(tj))
f2(c(tk)) f1(c(tk)) f0(c(tk))

∣∣∣∣∣∣ (1.15)
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for 1 ≤ i, j, k ≤ hd + 1, that define the projection Pr(ΓP). To calculate the
Zariski tangent space of Pr(ΓP), in the following we restrict (1.15) to a local
analytic neighborhood to remove extraneous equations. Since P is generic,
by Proposition 2.3 which will be proved below, the generic P satisfies Pencil
condition (for P): for a generic f ∈ P, If ∩ Ig = ∅ for any other g ∈ P.

Let us continue with the pencil condition. Let cg ∈ GP ( IP is non-empty)
be a rational curve. If the subspace

Λcg = span

{(
f2(cg(t)), f1(cg(t)), f0(cg(t))

)}
t∈P1

in C3 had dimension one. Then there would be generic vectors (genericity
is due to the genericity of the hypersurface containing cg) βi, i = 1, 2 in C3

such that
βi · Λcg = 0

where · is the “dot” product in C3. Hence there are two generic hypersurfaces
in the collection P,

β1 · (f2, f1, f0), and β2 · (f2, f1, f0)

and both contain cg. Therefore the pencil condition is violated. So dim(Λcg) ≥
2 (actually it can’t be 3 because cg ∈ IP). Thus we obtain two linearly in-
dependent 3-dimensional vectors(

f2(c(t1)), f1(c(t1)), f0(c(t1))

)
(
f2(c(t2)), f1(c(t2)), f0(c(t2))

)
for all c in a sufficiently small analytic open set UMd

in Md, centered around
cg. They span the plane Λc (depending on c) in C3. Then if

bi(c) = 0 for i = 3, · · · , hd+ 1,

at some c in the neighborhood, all hd+ 1 vectors(
f2(c(ti)), f1(c(ti)), f0(c(ti))

)
, i = 1, · · · , hd+ 1

must lie in the plane Λc. This implies that polynomials of (1.15) vanish at
the same c. Thus if we let UP = UMd

∩ IP be the restriction of IP to the
analytic neighborhood, then it is only defined by hd− 1 equations

bi(c) = 0, i = 3, · · · , hd+ 1.
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Thus
ker((ν1)∗|cg) = TcgIP, (1.16)

for cg ∈ GP. By the surjectivity of (ν1)∗ in Proposition 1.7, the kernel of
(ν1)∗ at a point of GP for a generic P has dimension (h + 1 − n)d + n + 2.
We proved Proposition 1.5.

At last we mention the proof of Proposition 1.7, i.e. the surjectivity of
(ν1)∗. The proof is simply a specialization of Jacobian data. But there is
one trick before the specialization. We’ll add 6 components to extend the
direct ν1 to the indirect holomorphic map ν2 : M → Chd+5, surjectivity of
whose differential implies the surjectivity of (ν1)∗ at the same point. Next
we divide the Jacobian matrix of (ν2)∗ to 4 blocks. For each block, we
specialize the corresponding variables in Jacobian data separately to obtain
the non-degeneracy of the block. Then we deform variables to a general
position to unite the blocks to a non degenerate Jacobian matrix.

1.2.2 General type

A generic hypersurface of general type is a plane section X of a generic
Calabi-Yau hypersurface Y . Then a rational curve C ⊂ X is automatically
a rational curve on Y . Applying the projection T•Y → T•X, we obtain that
H1(NC/Y ) = 0 implies H1(NC/X) = 0. Since in the Calabi-Yau case we
have H1(NC/Y ) = 0, then H1(NC/X) = 0. A general deformation theory
says H0 of the normal sheaf is the tangent space of the Hilbert scheme, and
H1 contains the obstruction space. Hence the deformation of C in X is free
of obstruction. This implies the Main theorem in this case.

1.3 Organization

The rest of the paper is organized as follows. In section 2, we prove Propo-
sition 1.4. It gives the principle idea: shift the focus from Hilbert scheme to
the alternative for rational curves. In section 3, we use the Jacobian data
to study the cases of Calabi-Yau and Fano. In section 4, we use the stan-
dard technique in deformation theory to prove the result for hypersurfaces
of general type.
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2 First order deformation of rational curves

In this section we try to understand the deformation of the pair (f, c). The
main purpose is to show how to use the deformation of the pair to change
our focus from the pairs to the rational curves only. The results hold for all
types of generic hypersurfaces, but we’ll only use them for Calabi-Yau and
Fano.

2.1 First order deformations of the pair

Lemma 2.1. Consider the maps in the usual triangle of the Hilbert scheme,

Γ
P ′l

��

P ′r

##
S Md(P

n)

(2.1)

where Md(P
n) is the Hilbert scheme of irreducible rational curves of degree

d in Pn, Γ is the non-empty incidence scheme of the containment relation,

{(f, C) ∈ S ×Md(P
n) : C ⊂ f}.

Assume the projection P ′l is dominant. Then at a point (f, C) ∈ Γ with
S-generic f , the homomorphism

(P ′l )∗ : T(f,C)Γ → TfS (2.2)

is surjective.

Proof. We divide the components of Γ into two types: (I) Γ1 the collec-
tion of components dominating S, (II) Γ2 the collection of components not
dominating S. Then P ′l (Γ2) is a lower dimensional subvariety of S. Let

E = {(f, C) ∈ Γ1 : (P ′l )∗(T(f,C)Γ) 6= TfS}

be the subset which is a subvariety. If P ′l |E : E → S dominated S, then there
was a smooth, non empty open set UE of E, to which the restriction of P ′l |E
was smooth. Thus its differential must’ve been surjective. This would’ve
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contradicted the definition of E. Hence P ′l (E) is also a lower dimensional
subvariety of S. Then for S-generic f ∈ P ′l (Γ1\E),

T(f,C)Γ → TfS (2.3)

is surjective. This proves the lemma

Lemma 2.1 holds if we change the Hilbert scheme Md to Md.

Definition 2.2. We apply this lemma to obtain a special notation for the
first oder deformation of the rational curves. Let (f0, C0) ∈ Γ be a point
satisfying Lemma 2.1. Let c0 be the normalization of C0. Let f ∈ S be
another hypersurface. We denote a vector parallel to the line through f0, f

by
−→
f . Then the lemma implies that there is a vector 〈

−→
f 〉M in Tc0M such

that
(
−→
f , 〈
−→
f 〉M )

lies in the tangent space of the alternative incidence scheme. We denote the
corresponding section in H0(c∗0(TPn)) by

〈
−→
f 〉.

Remark Note that 〈
−→
f 〉M depends on (f0, c0) and is only unique modulo

Tc0If0 .

2.2 Pencil condition

Recall that the pencil condition for P requires that a rational curve c ∈
GP lies in one generic hypersurface f ∈ P, but does not lie in any other
hypersurfaces in the collection P. The condition is necessary for Proposition
1.7. In the following lemma we give sufficient conditions for surfaces P to
satisfy pencil condition.

Lemma 2.3. Let f0 ∈ P be S-generic. Let Vi, i = 1, 2 be irreducible subva-
rieties of S such that for each i, the intersection of all hypersurfaces in Vi
is empty. Then for generic (g1, g2) ∈ V1× V2, the plane P = span(f0, g1, g2)
satisfies the pencil condition. In particular generic P in S satisfies the pencil
condition.
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Proof. Since f0 is S-generic, Definition 2.2 is valid around f0. So Lemma
2.1 and Definition 2.2 yield

Claim 2.4. for a fixed (f0, c0) ∈ Γ (satisfying the surjectivity condition

(2.2)), 〈
−→
f 〉M 6∈ Tc0If0 if and only if the rational curve c0(P1) 6⊂ f , i.e if

and only if f does not contain c0.

Then by the genericity of g1, Claim 2.4 yields that

〈−→g 1〉M 6∈ Tc0If0

i.e.
Tc0Ispan(f0,g1) = Tc0If0 ⊕ C〈−→g 1〉M . (2.4)

Now we extend the span(f0, g1) by g2. Suppose 〈−→g 2〉M lied in

Tc0If0 ⊕ C〈−→g 1〉M .

Then
〈
−−−−−−→
ag2 − bg1〉M ∈ Tc0If0 (2.5)

where a, b are complex numbers. Then ag2− bg1 would’ve contained the ra-
tional curve c0. Furthermore g2 would’ve contained the intersection points of
g1 and c0. This is impossible because the intersection of all the hypersurfaces
ag2 is empty (if a 6= 0). Therefore

Tc0Ispan(f0,g1,g2) = Tc0If0 ⊕ C〈−→g 1〉M ⊕ C〈−→g 2〉M . (2.6)

Suppose c0 lied in some hypersurace ε0f0 + ε1g1 + ε2g2 where ε1, ε2 are
non-zero complex numbers. Then it would’ve lied in ε1g1 + ε2g2. By claim
2.4,

〈−−−−−−−→ε1g1 + ε2g2〉M
lied in Tc0If0 . This contradicts (2.6). We complete the proof.

Pencil condition allows us to reduce the problem to the surjectivity of
the differential (ν1)∗.
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2.3 Zariski tangent spaces

A general result in the deformation theory reveals that the Hilbert
scheme can be determined by the normal sheaf. So in this section we study
how the normal sheaf relates the alternative of the Hilbert scheme.

Lemma 2.5. Let f0 be generic in S, and L2 ⊂ S be the pencil spanned
by f0 and another hypersurface f2. Assume they determine the components
If0 , IL2 satisfying

If0 ⊂ IL2 , c
∗
0(f2) 6= 0 with c0 ∈ If0 (2.7)

Then
(a)

Tc0If0
ker

' H0(c∗0(TX0)). (2.8)

where ker is a line through the origin in Tc0If0 and X0 = div(f0).
(b)

dim(Tc0IL2)) = dim(Tc0If0) + 1, (2.9)

Proof. (a). There is a regular map of the evaluation:

e : Md ×P1 → Pn

(c, t) → c(t).
(2.10)

Then its differential map point-wisely gives a rise to a homomorphism

e∗ : Tc0Md → H0(c∗0(TPn))
α → c∗0(e∗(α)).

(2.11)

Let’s analyze it. Let M0, · · · ,Mn be the subsets of Tc0Md = M , that are
the (n + 1) tuples of H0(OP1(d)) in M . Because c0 is birational, through
the rational projections of Pn to one of its n + 1 coordinates components
z0, z1, · · · , zn, we obtain the n+ 1 identity maps

e∗|M i : M i → H0(c∗0(OPn(1))) ' H0(OP1(d))

for i = 0, · · · , n. Then these maps give an isomorphism

M = Tc0Md ' H0(c∗0(OPn(1))⊕(n+1)). (2.12)
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Projectivizing both sides, we obtain the isomorphism

ς ′ : T[c0]P(Md)→ H0(c∗0(TPn)). (2.13)

The hypersurface div(f0) = X0 inserts the isomorphic subspaces to both
sides of (2.13), defined by the vanishing of partial derivatives at c0 of the
coefficients of f0(c(t)) (through the identification of (2.13)),

Tc0P(Md) ' H0(c∗0(TPn))
∪ ∪

T[c0]P(If0) ' H0(c∗0(TX0))
(2.14)

Notice that

T[c0]P(If0) =
Tc0If0
ker

(2.15)

where ker is the equivalence line from the projectivization. This completes
the proof of part (a).

(b). Denote the composition of

Tc0Md → T[c0]P(Md)
ς′→ H0(c∗0(TPn)) (2.16)

by ς. Recall in Definition 2.2, we denote a non-zero vector in

ς−1(〈
−→
f2〉) (2.17)

by

〈
−→
f2〉M

Since
∂f0(c0(t))

∂〈
−→
f2〉

= −c∗0(f2) 6= 0, (2.18)

( we regard f(c(t)) as a function in f, c) by part (a), 〈
−→
f2〉M does not lie in

Tc0If0 . Since

Tc0IL2 = Tc0If0 + C〈
−→
f2〉M , (2.19)

Tc0IL2 has dimension dim(Tc0If0) + 1.
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Lemma 2.6. Let f0, f1, f2 be linearly independent in S and f0 be S-generic.
Assume P = span(f0, f1, f2) satisfies the pencil condition. Recall

L2 = span(f0, f2).

We choose components
If0 ⊂ IL2 ⊂ IP,

and let c0 ∈ If0. Then

dim(Tc0IP) = dim(Tc0IL2) + 1. (2.20)

Furthermore
dim(T(f0,c0)ΓP) = dim(Tc0IP).

Proof. This is proved in Lemma 2.3 by the formula (2.6).

Lemmas 2.3 -2.6 proved Proposition 1.4. In the rest of the section, we
only concentrate on Proposition 1.5.

3 Calabi-Yau and Fano

Theorem 1.1 for the Calabi-Yau and Fano case follows from Proposition 1.5,
which has been shown to be a consequence of Proposition 1.7. The idea in
proving Proposition 1.7 is computational and we try to achieve a “simpler”
representation of the Jacobian matrix through a search of a “better” Jaco-
bian data. In this section, all neighborhoods and the word “local” are in the
sense of Euclidean topology. It is divided into three steps. Each subsection
contains one.

Subsection 3.1: We add 6 components to the direct ν1 to obtain the
indirect holomorphic map

ν2 : M → Chd+5 (3.1)

The surjectivity of (ν2)∗ at a point on IP implies the surjectivity of (ν1)∗ at
the same point. The important realization in this step is that the surjectivity
of (ν2)∗ can be mostly determined by the specialization of f1, f2 (which plays
a role of the 1st order deformation of the rational curve). This allows us
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to have an accessible computation without a specialization of the geometry
(which must involve f0).

Subsection 3.2: Let cg ∈ Md be a point. We’ll construct local analytic
coordinates of Md around cg, called quasi-polar coordinates. They will be
used to analyze the Jacobian matrix of (ν2)∗.

Subsection 3.3: Adjust Jacobian data for ν2, especially choose particular
f1, f2. This allows us to break the representation matrix into block matrices,
so we can deal blocks one-by-one after the specialization. Once (ν2)∗ is
surjective for one special set of variables, we deform all variables to general
positions.

3.1 Holomorphic maps

In this section we show the conversion from direct ν1 to indirect ν2.

Recall the definition of ν1. First let P be a plane in S spanned by three
hypersurfaces f0, f1, f2. Choose hd+1 distinct, ordered designated points ti
on C ⊂ P1, denoted by t = (t1, · · · , thd+1). Then ν1 is just the holomorphic
map

ν1 : M → Chd−1

c →

∣∣∣∣∣∣
f2(c(ti)) f1(c(ti)) f0(c(ti))
f2(c(t1)) f1(c(t1)) f0(c(t1))
f2(c(t2)) f1(c(t2)) f0(c(t2))

∣∣∣∣∣∣

i=3,··· ,hd+1

(3.2)

Expand the determinant in (3.2) along the first row

∣∣∣∣∣∣
f2(c(ti)) f1(c(ti)) f0(c(ti))
f2(c(t1)) f1(c(t1)) f0(c(t1))
f2(c(t2)) f1(c(t2)) f0(c(t2))

∣∣∣∣∣∣
‖∣∣∣∣ f1(c(t1)) f0(c(t1))

f1(c(t2)) f0(c(t2))

∣∣∣∣ f2(c(ti)) +

∣∣∣∣ f0(c(t1)) f2(c(t1))
f0(c(t2)) f2(c(t2))

∣∣∣∣ f1(c(ti))

+

∣∣∣∣ f2(c(t1)) f1(c(t1))
f2(c(t2)) f1(c(t2))

∣∣∣∣ f0(c(ti))

17



for i = 3, · · · , hd + 1. Thus the differential (ν1)∗ has hd − 1 coordinate’s
components of Chd−1,

φi =

∣∣∣∣ f1(c(t1)) f0(c(t1))
f1(c(t2)) f0(c(t2))

∣∣∣∣df2(c(ti)) +

∣∣∣∣ f0(c(t1)) f2(c(t1))
f0(c(t2)) f2(c(t2))

∣∣∣∣df1(c(ti))

+

∣∣∣∣ f2(c(t1)) f1(c(t1))
f2(c(t2)) f1(c(t2))

∣∣∣∣df0(c(ti)) +
∑l=2,j=2

l=0,j=1 h
i
lj(c)dfl(c(tj))

(3.3)
for i = 3, · · · , hd+ 1, where d is the differential.

Define three numbers for a fixed rational curve cg ∈Md,

δ1 =

∣∣∣∣ f0(cg(t1)) f2(cg(t1))
f0(cg(t2)) f2(cg(t2))

∣∣∣∣ ,
δ2 =

∣∣∣∣ f1(cg(t1)) f0(cg(t1))
f1(cg(t2)) f0(cg(t2))

∣∣∣∣
δ0 =

∣∣∣∣ f2(cg(t1)) f1(cg(t1))
f2(cg(t2)) f1(cg(t2))

∣∣∣∣
(3.4)

Then define the hypersurface f3 by

f3 = δ2f2 + δ1f1 + δ0f0. (3.5)

Proposition 3.1. Let ν2 be the holomorphic map

ν2 : M → Chd+5 (3.6)

given by hd+ 5 polynomials

f0(c(t1)), f0(c(t2)), f1(c(t1)), f1(c(t2)), f2(c(t1)), f2(c(t2))
f3(c(t3)), f3(c(t4)), f3(c(t5)), · · · , f3(c(thd)), f3(c(thd+1)).

(3.7)

Then the surjectivity of (ν2)∗ at the point cg implies the surjectivity of (ν1)∗
at the same point.

Remark If we choose variables t1, t2, cg, f1, f2 satisfying one equation,∣∣∣∣ f2(cg(t1)) f1(cg(t1))
f2(cg(t2)) f1(cg(t2))

∣∣∣∣ = 0, (3.8)

i.e. δ0 = 0, then the surjectivity of (ν2)∗ at cg, therefore the surjectivity of
(ν1)∗ at cg can be computed by the specialization of f1, f2.

.
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Proof. The differential of ν1 consists of hd− 1 components

φ3, · · · , φhd+1

where each component is

φi =

∣∣∣∣ f1(c(t1)) f0(c(t1))
f1(c(t2)) f0(c(t2))

∣∣∣∣df2(c(ti)) +

∣∣∣∣ f0(c(t1)) f2(c(t1))
f0(c(t2)) f2(c(t2))

∣∣∣∣df1(c(ti))

+

∣∣∣∣ f2(c(t1)) f1(c(t1))
f2(c(t2)) f1(c(t2))

∣∣∣∣df0(c(ti)) +
∑l=2,j=2

l=0,j=1 h
i
lj(c)dfl(c(tj)).

(3.9)
If (ν2)∗ is surjective at the point cg, hd+ 5 differential 1-forms,

df0(c(t1)),df0(c(t2)),df1(c(t1)),df1(c(t2)),df2(c(t1)),df2(c(t2))
df3(c(t3)),df3(c(t4)),df3(c(t5)), · · · ,df3(c(thd)),df3(c(thd+1)).

(3.10)

when evaluated at cg are linearly independent in the cotangent space T ∗cgM .
Thus the particular expression of formula (3.9) shows that the differential
1-forms

φ3, · · · , φhd+1

are also linearly independent in the same cotangent space T ∗cgM . Hence ν1

is surjective at the same point.

3.2 Quasi-polar coordinates

We introduce local analytic coordinates of the affine space M , that will
simplify expressions of differentials on M .

Definition 3.2. (polar coordinates for polynomials of one variable) Let a0 ∈
H0(OP1(d)) be a non-zero element satisfying that the zeros are distinct.
Then there is a Euclidean neighborhood U ⊂ H0(OP1(d)) of a0, which has
analytic coordinates r, w1, · · · , wd (r 6= 0) such that any element a ∈ U has
an expression

a = r

d∏
j=1

(t− wj). (3.11)

We call {r, w1, · · · , wd} the polar coordinates of H0(OP1(d)) at a0.
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Next we fix the notations of polar coordinates for each componentH0(OP1(d))
of Md. Let non-zero c = (c0, · · · , cn) with

ci ∈ H0(OP1(d)), i = 0, · · · , n

be a varied point of Md in a small analytic neighborhood centered around
some point cg = (c0

g, · · · , cng ). We assume the equations ci(t) = 0, i ≤ n,
(including cig(t) = 0) always have hd distinct zeros

θij , for 0 ≤ i ≤ n, 1 ≤ j ≤ d

Then we have polar coordinates for M around cg. We denote them by

ri, θ
i
j ,

j = 1, · · · , d, i = 0, · · · , n (3.12)

with ri 6= 0 satisfying

ci(t) = ri

d∏
j=1

(t− θij). (3.13)

The values of the center point cg of the neighborhood are denoted by

r̊i, θ̊ij
for i = 0, · · · , n, j = 1, · · · , d.

Next we define quasi-polar coordinates that are associated to the special
type of hypersurfaces we are going to choose later. They are partial polar
coordinates for Md with a replacement of last two components cn−1, cn. Let
q be a homogeneous quadratic polynomial in variables z0, · · · , zn. Let

h(c, t) = δ1q(c(t)) + δ2c
n−1(t)cn(t). (3.14)

for c ∈ M , where δi, i = 1, 2 are two complex numbers, generic in C2.
Assume for c in a small analytic neighborhood, h(c, t) = 0 has 2d distinct
zeros. Let γ1, · · · , γ2d be the zeros of h(c, t) = 0. Similar to the polar
coordinates, we let

h(c, t) = R

2d∏
k=1

(t− γk), R 6= 0
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It is clear that

R = δ1q(r0, r1, r2, r3, r4) + δ2rn−1rn, and
γk are analytic functions of c.

( Notice R is the value of h(c, t) at t = ∞, the coefficient of the highest
order.). Let the coordinates values at the center point be R̊, γ̊k.

Proposition 3.3. Let δ1, δ2 and q be generic. Let Ucg ⊂M be an analytic
neighborhood of a center point cg as above.

Let

% : Ucg → C(n+1)(d+1) (3.15)

be a regular map that is defined by

(θ0
1, · · · , θnd , r0, · · · , rn)y%

(θ0
1, · · · , θ

n−2
d , r0, · · · , rn, γ1, · · · , γ2d).

(3.16)

Then % is an isomorphism to its image.

Proof. It suffices to prove the complex differential of % at cg is an isomor-
phism for specific q, δi. So we assume that

δ1 = 0, δ2 = 1.

Then h(c, t) = cn−1(t)cn(t). Hence γk, k = 1, · · · , 2d are just

θij , i = n− 1, n, j = 1, · · · , d.

So % is the identity map. We complete the proof.

Definition 3.4. By Proposition 3.3, for generic δ1, δ2, q,

θ0
1, · · · , θn−2

d , r0, r1, · · · , rn, γ1, · · · , γ2d (3.17)

are local analytic coordinates of Md around cg. We denote the system of
coordinates by

CM

and will be called quasi-polar coordinates.
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Let’s apply the quasi-polar coordinates to calculate a Jacobian matrix.
Choose a generic homogeneous coordinates [z0, · · · , zn] for Pn. Let

f3 = z0z1 · · · zn−2(δ1q + δ2zn−1zn). (3.18)

be a polynomial, where δ1, δ2, q are generic. Let cg ∈Md such that

f3(cg(t)) 6= 0.

Let CM be the associated quasi-polar coordinates around cg. We denote the
zeros of f3(cg(t)) = 0 by

t̃1, t̃2, · · · , t̃hd.

Lemma 3.5. Then
(a) the Jacobian matrix

J(cg) =
∂(f3(cg(t̃1)), · · · , f3(cg(t̃hd))

∂(θ0
1, · · · , θ

n−2
d , γ1, · · · , γ2d)

(3.19)

is equal to a diagonal matrix D whose diagonal entries are non-zero
partial derivatives with respect to the variable c evaluated at cg,

∂f3(cg(t̃1))

∂θ0
1

, · · · ,
∂f3(cg(t̃(h−2)d))

∂θn−2
d

,
∂f3(cg(t̃(h−2)d+1))

∂γ1
, · · · , ∂f3(cg(t̃hd))

∂γ2d

(3.20)
where θ••, γ• from the CM coordinates of Md.

(b) For i = 1, · · · , hd, l = 0, · · · , n, the partial derivatives evaluated at
cg,

∂f3(cg(t̃i))

∂rl
= 0.

Proof. Note θ̊ij , i = 0, · · · , n, j = 1, · · · , d and γ̊k, k = 0, · · · , 2d are distinct.
Thus the coordinates in Definition 3.4 exist. Using the CM coordinates for
the function f3(c(t̃i)) (of variable c), we have

f3(c(t)) = r0 · · · rn−2R

i=n−2,j=d,k=2d∏
i=0,j=1,k=1

(t− θij)(t− γk). (3.21)

Notice right hand side of (3.21) is in analytic coordinates CM , and R is a
polynomial in variables r0, · · · , rn. Both parts of Lemma 3.5 follow from the
expression (3.21). We complete the proof.
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3.3 Specialization of Jacobian data

Now we are ready to make the computation for Proposition 1.7. It has two
steps.

1st step: Specialization of Jacobian data. There are 4 types of variables
in Jacobian data to be specialized and adjusted: intrinsic hypersurfaces
f1, f2, rational curve cg, and extrinsic coordinates zi, designated points ti ∈
P1.

Let z0, · · · , zn be general homogeneous coordinates of Pn. Let f0 be
S-generic. Let

f2 = z0z1 · · · zn,
f1 = z0 · · · zn−2q,

where q is a generic quadratic homogeneous polynomial in z0, · · · , zn.

We’ll work with the special plane P spanned by f0, f1, f2, which by
Lemma 2.3 satisfies the pencil condition. Now we continue the selection
of Jacobian data. Let

cg ∈ IP
be a generic point such that

cg = (c0
g, · · · , cng )

satisfies that cig 6= 0 for all i and equations

cig(t) = 0, i = 0, · · · , n

have (n + 1)d distinct zeros θ̊ij ∈ P1. (It is quite important to notice that
cg does not lie in any individual f0, f1, f2, but it does lie in a unspecified
linear combination of them). Let’s choose special hd + 1 distinct points ti
on C ⊂ P1, denoted by ts = (t1, · · · , t5d+1) (the designated points).

(1) thd+1 is generic and variables t1, t2, zi, q, cg satisfy one equation∣∣∣∣ f2(cg(t1)) f1(cg(t1))
f2(cg(t2)) f1(cg(t2))

∣∣∣∣ = 0, (3.22)

(this is the choice for thd+1, t1, t2)
(2) t3, · · · , thd are the hd− 2 complex numbers

θ̊ij , γ̊k, (i, j) 6= (0, 1), (1, 1)

1 ≤ k ≤ 2d, 0 ≤ i ≤ n− 3, 1 ≤ j ≤ d.
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that are all zeros of

f3(cg(t)) = δ1f1(cg(t)) + δ2f2(cg(t)) = 0. (3.23)

but excluding two zeros θ̊0
1, θ̊

1
1, where

δ1 =

∣∣∣∣ f0(cg(t1)) f2(cg(t1))
f0(cg(t2)) f2(cg(t2))

∣∣∣∣ ,
δ2 =

∣∣∣∣ f1(cg(t1)) f0(cg(t1))
f1(cg(t2)) f0(cg(t2))

∣∣∣∣ .
(3.24)

Let’s see δ1, δ2 are distinct. By the pencil condition,(
f2(c(t1)), f1(c(t1)), f0(c(t1))

)
(
f2(c(t2)), f1(c(t2)), f0(c(t2))

)
.

(3.25)

span a 2 dimensional plane. We can choose t1, t2, zi, q, cg such that∣∣∣∣ f2(cg(t1)) f1(cg(t1))
f2(cg(t2)) f1(cg(t2))

∣∣∣∣ = 0 (3.26)

and also allow the complex numbers δ1, δ2 to be generic due to the genericity
of q (for instance, a generic constant multiple of q will give the genericity of
(δ1, δ2)).

Using these selected Jacobian data, let’s recall the formulation of dif-
ferential algebra. Applying designated points t1, · · · , thd+1 we obtain the
differential of ν1, whose each component is

φi =

∣∣∣∣ f1(c(t1)) f0(c(t1))
f1(c(t2)) f0(c(t2))

∣∣∣∣df2(c(ti)) +

∣∣∣∣ f0(c(t1)) f2(c(t1))
f0(c(t2)) f2(c(t2))

∣∣∣∣df1(c(ti))

+

∣∣∣∣ f2(c(t1)) f1(c(t1))
f2(c(t2)) f1(c(t2))

∣∣∣∣df0(c(ti)) +
∑l=2,j=2

l=0,j=1 h
i
lj(cg)dfl(c(tj))

(3.27)
for i = 3, · · · , hd+ 1. Let’s evaluated at cg. By the only constraint (3.22),∣∣∣∣ f2(cg(t1)) f1(cg(t1))

f2(cg(t2)) f1(cg(t2))

∣∣∣∣ = 0.

Then we obtain

φi|cg = δ1df1(c(ti))|cg + δ2df2(c(ti))|cg +
∑l=2,j=2

l=0,j=1 h
i
lj(cg)dfl(c(tj))|cg

= df3(c(ti))|cg +
∑l=2,j=2

l=0,j=1 h
i
lj(cg)dfl(c(tj))|cg

(3.28)
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where
f3 = δ1f1 + δ2f2. (3.29)

Notice (δ1, δ2) is generic.

Applying Proposition 3.1, we switch the ν1 to the differential of another
holomorphic map ν2.

Claim 3.6. (ν2)∗ is surjective at a generic point cg ∈ IP.

Proof. of Claim 3.6: The Jacobian matrix for ν2 is not a square matrix. To
have a square matrix, we select a square minor in the Jacobian matrix of ν1

in the following way. We may assume h ≥ 2. First we choose the smooth
subvariety Ms in the analytic neighborhood of M that is defined by{

r3 = · · · = rn−2 = 0

θji = 0, i = 1, · · · , d, j = h− 2, · · · , n− 2.

So the non-zero CM coordinates for Ms can be written

θji , γ1, · · · γ2d, r0, r1, r2, rn−1, rn

where i = 1, · · · , d, j = 0, · · · , h − 3. So there are hd + 5 analytic variables
for local Euclidean space Ms ' Chd+5. ( The requirement for this choice of
indexes is n ≥ 4 ). Let

A(CM , f0, f1, f2, t) (3.30)

be the Jacobian matrix of the restriction of ν2 to Ms at cg, under an analytic
coordinates system CM on Ms We break

A(CM , f0, f1, f2, t)

to block matrices. (
A11 A12

A21 A22

)
(3.31)

where Aij are the Jacobian matrices as follow:
(a)

A11 =
∂(f3(c(t3)), f3(c(t4)), · · · , f3(c(thd)))

∂(θ0
2, · · · , θ̂1

1, · · · , θdh−3, γ1, · · · , γ2d)
, ((̂·) := omit) (3.32)
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(b)

A12 =
∂(f3(c(t3)), f3(c(t4)), · · · , f3(c(thd)))

∂(θ0
1, θ

1
1, r0, r1, r2, rn−1, R)

. (3.33)

(c)

A21 =

∂(f3(c(thd+1)), f2(c(t1)), f2(c(t2)), f1(c(t1)), f1(c(t2)), f0(c(t1)), f0(c(t2)))

∂(θ0
2, · · · , θ̂1

1, · · · , θdh−3, γ1, · · · , γ2d)
.

(3.34)
(d)

A22 =

∂(f3(c(thd+1)), f2(c(t1)), f2(c(t2)), f1(c(t1)), f1(c(t2)), f0(c(t1)), f0(c(t2)))

∂(θ0
1, θ

1
1, r0, r1, r2, rn−1, R)

.

(3.35)
Using Lemma 3.5, A11|cg is a non-zero diagonal matrix and

A12|cg = 0.

Therefore it suffices to show

det(A22)|cg 6= 0. (3.36)

Notice thd+1 is generic on P1. The genericity of q makes curve in C7,

(
∂f3(c(t))

∂θ0
1

,
∂f3(c(t))

∂θ1
1

,
∂f3(c(t))

∂r0
, · · · , ∂f3(c(t))

∂rn
)|cg (3.37)

span the entire space C7. This means the first row vector of

A22(CM )|cg

which varies with thd+1 is generic with respect to other 6 row vectors. Hence
it suffices for us to show the Jacobian matrix

B(cg) =

∂(f2(c(t1)), f2(c(t2)), f1(c(t1)), f1(c(t2)), f0(c(t1)), f0(c(t2)))

∂(θ0
1, θ

1
1, r1, r2, rn−1, rn)

∣∣∣∣
cg

(3.38)

is non degenerate (the column of partial derivatives with respect to r0 is
eliminated). To do that, it suffices to show it is non-degenerate for a special
c′g ∈ IP. So we let L2 be the pencil through f0, f2. There is a component
IP containing the component IL2 where q from f2 is generic. Let c′g be a
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generic point of IL2 (c′g lies in a lower dimensional subvariety IL2 , but it is
still in Md because f0 is S-generic.). Because q is generic with respect to
1st, 2nd, 5th and 6th rows, two middle rows of the matrix B(cg),

(∂f1(c(t1))
∂θ01

, ∂f1(c(t1))
∂θ11

, ∂f1(c(t1))
∂r1

, · · · , ∂f1(c(t1))
∂rn

)|c′g
(∂f1(c(t2))

∂θ01
, ∂f1(c(t2))

∂θ11
, ∂f1(c(t2))

∂r1
, · · · , ∂f1(c(t2))

∂rn
)|c′g

(3.39)

in C6 must be linearly independent of 1st, 2nd, 5th and 6th rows (because
q can vary freely as c′g stays fixed). Then we reduce the non-degeneracy of
B(c′g) to the non-degeneracy of 4× 4 matrix

Jac(f0, c
′
g) =

∂
(
f2(c(t1)), f2(c(t2)), f0(c(t1)), f0(c(t2))

)
∂(θ0

1, r2, rn−1, rn)
|c′g . (3.40)

Finally we write down the matrix Jac(f0, c
′
g),

Jac(f0, c
′
g)

‖

λ


1

t1−θ̊01
1 1 1

1

t2−θ̊01
1 1 1

∂f0(c′g(t1))

∂θ01
(z2

∂f0
∂z2

)|c′g(t1) (zn−1
∂f0
∂zn−1

)|c′g(t1) (zn
∂f0
∂zn

)|c′g(t1)

∂f0(c′g(t2))

∂θ01
(z2

∂f0
∂z2

)|c′g(t2) (zn−1
∂f0
∂zn−1

)|c′g(t2) (zn
∂f0
∂zn

)|c′g(t2)

 ,

(3.41)
where λ is a non-zero complex number. We further compute to have

Jac(f0, c
′
g)

‖

λ( 1

t1−θ̊01
− 1

t2−θ̊01
)

 1 1 1

(z2
∂f0
∂z2

)|c′g(t1) (zn−1
∂f0
∂zn−1

)|c′g(t1) (zn
∂f0
∂zn

)|c′g(t1)

(z2
∂f0
∂z2

)|c′g(t2) (zn−1
∂f0
∂zn−1

)|c′g(t2) (zn
∂f0
∂zn

)|c′g(t2)

 ,

(3.42)

where θ̊0
1 is a complex number. Since all the variables t1, t2, zi, q are only

required to satisfy one equation (3.22), we may assume (t1, t2) ∈ C2 is
generic. Let’s now prove the non-degeneracy of Jac(f0, c

′
g). First we identify

the hypersurface containing c′g as f ′. Then we consider the Jacobian,

J(f ′, c′g) =

∣∣∣∣∣∣∣
1 1 1

(z2
∂f ′

∂z2
)|c′g(t1) (zn−1

∂f ′

∂zn−1
)|c′g(t1) (zn

∂f ′

∂zn
)|c′g(t1)

(z2
∂f ′

∂z2
)|c′g(t2) (zn−1

∂f ′

∂zn−1
)|c′g(t2) (zn

∂f ′

∂zn
)|c′g(t2)

∣∣∣∣∣∣∣ .
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We calculate

J(f ′, c′g) =

∣∣∣∣ f4(c′g(t1)) f5(c′g(t1))

f4(c′g(t2)) f5(c′g(t2))

∣∣∣∣ .
where

f4 = z2
∂f ′

∂z2
− zn ∂f

′

∂zn

f5 = zn−1
∂f ′

∂zn−1
− zn ∂f

′

∂zn

are two hypersurfaces. If J(f ′, c′g) = 0, then by the genericity of t1, t2, the
two dimensional vectors vectors(

f4(c′g(t)), f5((c′g(t)

)
, all t

must span a line. So there exist two complex numbers ε1, ε2 not all zeros
such that

(ε1z2
∂f ′

∂z2
+ ε2zn−1

∂f ′

∂zn−1
+ (−ε1 − ε2)zn

∂f ′

∂zn
)|c′g(t) = 0. (3.43)

Then the t-varied vector

η = (0, 0, ε1c
′2
g , 0, · · · , 0, ε2c′n−1

g , (−ε1 − ε2)c′ng )

is the non-zero holomorphic section of (c′g)
∗(TX′), where div(f ′) = X ′ is the

generic and c′ig is the i-th component of c′g. Notice that

(c′g)
∗(TX′) (3.44)

has rank n − 1. Using a generic coordinates zi, the pullback of the plane
{z0 = z1 = z3 = · · · = zn−2 = 0} to the bundle c∗0(Pn) defines a rank
1 subbundle E of (c′g)

∗(TX′), where the η lies in. On the other hand the
tangent vector of the rational curve c′g(P

1) at generic points should also be
cut (by the above plane) into this rank 1 bundle. Hence η must be parallel
to the rational curve after mod-out {z0 = z1 = z3 = · · · = zn−2 = 0}. This
is impossible by the genericity of zi coordinates. We complete the proof of
Claim 3.6.

2nd step: Let’s deform to a general position. By the claim 3.6, we deform
P to the general position. Hence we proved Proposition 1.7 at generic points
of IP for a generic P. Suppose cg is not generic, i.e. cg ∈ GP satisfies that

(ν1)∗|c : TcIP → T0Chd−1 (3.45)
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is not surjective. Then by the genericity of the hypersurface associated to
the rational curve cg, there is an irreducible subvariety

ΣP ⊂ ΓP

dominating P such that for generic (f, cg) ∈ ΣP,

(ν2)∗|cg : TcgIP → T0Chd−1 (3.46)

is not surjective. where IP is the component containing Pl(ΣP). On the
other hand, by the dominance of ΣP → P, the proof for claim 3.6 will
hold. It shows that at generic point cg of Pl(ΣP), (ν1)∗|cg is surjective.
This contradicts the choice of ΣP, which says that (ν2)∗|cg is not surjective.
Therefore Proposition 1.7 holds at all points cg ∈ GP.

3.4 Hilbert scheme Md(X)

In this subsection we come back to the invariant Hilbert scheme to prove
Theorem 1.1. We’ll show the results in Propositions 1.4, 1.5, 1.7 for the
alternative lead to the consequences of the normal sheaf, then to the Hilbert
scheme.

Proof. of Theorem 1.1: Now we give the proof Theorem 1.1, which changes
the focus from the alternative to the Hilbert scheme. Let P = span(f0, f1, f2)
be generic, and c0 ∈ GP. We may allow c0(P1) ⊂ f0. By Proposition 1.5,

(n+ 1− h)d+ n+ 2 (3.47)

is the dimension of the Zariski tangent space Tc0IP. Furthermore using
Lemma 2.5 and Lemma 2.6, we obtain that

dim(Tc0If0) = (n+ 1− h)d+ n. (3.48)

Then we obtain that

dim(H0(Nc0/X)) = (n+ 1− h)d+ n− 4. (3.49)

Now we consider the exact sequence of sheaf modules on P1,

0 → Nc0/X → Nc0/Pn → c∗0(NX/Pn) → 0. (3.50)
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This induces the exact sequence of finite dimensional linear spaces

0 → H0(Nc0/X) → H0(Nc0/Pn) → H0(c∗0(NX/Pn)) → H1(Nc0/X) → 0.

This implies that

dimH1(Nc0/X) = dimH0(Nc0/Pn)− dimH0(Nc0/X)− dimH0(c∗0(NX/Pn)).
(3.51)

Using Euler sequence for Pn, we obtain

dim(H0(Nc0/Pn)) = (n+ 1)(d+ 1)− 4. (3.52)

Using adjunction formula, we obtain

dim(H0(c∗0(NX/Pn)) = hd+ 1. (3.53)

Then substituing all terms in (3.51), we obtain

dim(H1(Nc0/X)) = 0. (3.54)

This shows the obstruction space to the deformation of the rational curve is
zero. Applying the standard deformation technique as in Theorem 2.10, I,
[3], we obtain that the local dimension of the Hilbert scheme dim(Md(X)|C0)
at C0 = c0(P1) has dimension at least

dim(H0(Nc0/X)),

which is the dimension of the Zariski tangent space,

dim(TC0Md(X)).

That is
dim(Md(X)|C0) ≥ dim(H0(Nc0/X)).

On the other hand the scheme Md(X) should always satisfy

dim(Md(X)|C0) ≤ dim(TC0Md(X)) = dim(H0(Nc0/X)).

Therefore
dim(TC0Md(X)) = dim(Md(X)|C0)

is equal to dim(H0(Nc0/X)). Theorem 1.1 in the Calabi-Yau case at generic
points is proved.
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Finally we extend the result to all cg ∈ IL (non-generic points). To see
this, we suppose there is a birational-to-its-image map cg for each generic X
such that H1(Ncg/X) 6= 0. Then there is a subvariety Θ ⊂ Γ DOMINATING
S such that for all (cg, f) ∈ Θ,

H1(Ncg/X) 6= 0.

Then we can repeat the same process to obtain that H1(Ncg/div(fg)) = 0.
This contradiction shows such Θ does not exist. (actually the only condi-
tion for the vanishing H1 is that the component of the incidence scheme
dominates S). This completes the proof of Theorem 1.1 for Calabi-Yau and
Fano.

4 Hypersurfaces of general type

4.1 The case of n ≥ 4

In this section, we prove Theorem 1.1 for hypersurfaces of general type, i.e.
the case n+ 1− h < 0. This will follow from the Calabi-Yau case. We let

n+ 1 + δ = h (4.1)

where integer δ ≥ 1.

Let
ν : Pn+δ 99K Pn (4.2)

be the projection from the infinity Pδ−1. At a point

a ∈ Pn+δ\Pδ−1

the differential map

ν∗ : TaP
n+δ → Tν(a)P

n (4.3)

is surjective. Let F0 ∈ H0(OPn+δ(h)) be generic. F0 is restricted to

f0 ∈ H0(OPn(h))
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which is also generic. Let c0 ⊂ f0 be a rational curve in Pn. We denote its
inclusion in Pn+δ by cδ0. By the projection (4.3),

ν∗(Tdiv(F0)) = ν∗(Tdiv(f0)). (4.4)

Then we have an exact sequence of sheaves

0 → K → Ncδ0/div(F0) → Nc0/div(f0) → 0. (4.5)

where K is the kernel. Notice all sheaves are over P1.
Therefore we have the exact sequence of vector spaces

H1(Ncδ0/div(F0)) → H1(Nc0/div(f0)) → H2((cδ0)∗(K)) = 0. (4.6)

By Theorem 1.1 for the Calabi-Yau case,

H1(Ncδ0/div(F0)) = 0.

Hence
H1(Nc0/div(f0)) = 0.

Then we repeat Kollár’s theorem 2.10, I, [2] as above. This completes the
first part of Theorem 1.1 for hypersurfaces of general type at generic points.

Then by the same argument for the Calabi-Yau as above, we extend the
result to all cg ∈ IL. This completes the proof of Theorem 1.1.

4.2 The case of n = 3

We fill in the missing part in the proof of Corollary 1.2 for the case n ≤ 3.
This is not covered by Theorem 1.1. The case of n = 2 is classically known.
So it suffices to prove it for the case n = 3.

Proof. We’ll prove that a generic hypersurface in P3 of degree ≥ 5 does
not admit irreducible rational curves of any degrees. 2 We prove it by
a contradiction. Let X be a generic hypersurface of degree h ≥ 5 in P3,
defined by the polynomial f . Assume C is the rational curve of degree d
on X and c : P1 → C is its normalization. Let g be a homogeneous linear
polynomial of P3, defining a generic hyperplane. Let l1, · · · , lh be another

2The same statement for the case of immersed rational curves was proved in [2].
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h homogeneous linear polynomials defining hyperplanes such that c does lie
on them, and the equations

lk(c(t)) = 0 = l(c(t)), for all k

have distinct roots at smooth locus of c. Because f is S-generic, we can use
Definition 2.2 to obtain two sections of the bundle c∗(TP3),{

〈
−−−−→
l1 · · · lh〉,

〈
−−−−−−−−→
l1 · · · g · · · lh〉i, i = 1, · · · , h.

(4.7)

where 〈
−−−−−−−−→
l1 · · · g · · · lh〉i is a section of c∗(TP3) corresponding to the hypersur-

face l1 · · · g · · · lh with the substitution g at i − th hyperplane li. Then we
define

σi = l(c(t))〈
−−−−→
l1 · · · lh〉 − li(c(t))〈

−−−−−−−−→
l1 · · · g · · · lh〉i (4.8)

a section of the twisted bundle

c∗(TX(1)).

Let’s define a quotient bundle. Because c is a birational map to its image,
there are finitely many points ti ∈ P1 where the differential map

c∗ : TtiP
1 → Tc(ti)P

3 (4.9)

is not injective. Assume its vanishing order at ti is mi . Let

m =
∑
i

mi. (4.10)

Let s ∈ H0(OP1(m)) such that

div(s) = Σimiti.

The sheaf morphism c∗ is injective and induces a composed morphism ξ
of sheaves

TP1
c∗→ c∗(TX)

1
s(t)→ c∗(TX)⊗OP1(−m), (4.11)

where c∗(TP1) in c∗(TX) is a sub-sheaf generated by the image of the dif-
ferential map c∗. Notice that c∗(TP1) restricted to an open set P1\{ti} is a
line bundle. Taking a closure, we obtain a sub line bundle of c∗(TX), whose
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degree is m+2, and denoted by L. Then the morphism ξ is injective bundle
morphism (over P1). Let

Nm(1) =
c∗(TX)⊗OP1(−m)

ξ(TP1)
⊗ c∗(OP3(1)). (4.12)

Then σi/s is reduced to a section of Nm(1). By the adjunction formula

Nm(1) ' OP1

(
(5− h)d−m− 2

)
.

If h ≥ 5, (5−h)d−m−2 < 0. Hence σi
s is reduced to zero in N(1). Therefore

it is a section of the line bundle ξ(TP1)⊗ c∗(OP3(1)). The equations

l(c(t)) = li(c(t)) = 0, all i

have distinct hd zeros. Observing the expression (4.8), 〈
−−−−→
l1 · · · lh〉 must lie in

the sub-bundle
L ⊂ c∗(TX)

at these zeros which are smooth points of the regular map c.
Notice the bundle c∗(TP3) is generated by global sections. So is

c∗(TP3)

L
.

Hence
c∗(TP3)

L
' OP1(k1)⊕OP1(k2), (4.13)

where k1, k2 are non-negative. Since the degree of

c∗(TP3)

L

is 4d−m− 2. This implies

ki ≤ 4d−m− 2 < 4d.

Thus the section 〈
−−−−→
l1 · · · lh〉 is a section of the sheaf c∗(TP1). On the other

hand, the derivative of f in the direction of 〈
−−−−→
l1 · · · lh〉 is exactly l1 · · · lh|c(t)

which is non-zero. Hence the section 〈
−−−−→
l1 · · · lh〉 does not lie in the bundle

TX . Therefore it can’t be a section of c∗(TP1). This is a contradiction.
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