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Abstract

We define and study an increasing filtration on the rational coho-
mology of a smooth projective variety. Through that we’ll define the
level structure on the cohomology, where the “level” is referred to the
level in sub-Hodge structures or coniveau filtrations.
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1 Introduction

Let X be a smooth projective variety over the complex numbers. The total
Betti cohomology group

H(X;Q) =
∑
i

H i(X;Q)

over Q is a Q linear space. There are many well-known subgroups such as
the convineau filtration ([5])

NpHq(X) ⊂ Hq(X;Q),

sub-Hodge structures ([2])

LpHq(X) ⊂ Hq(X;Q),

and Hodge filtrations

F pHq(X) ⊂ Hq(X;C)

over C, etc. They are all functorial on the category SmProj/C of smooth
projective varieties over C. In this paper we are going to re-group them,
so that a symmetry induced by the Poincaré duality will emerge. At the
meantime they become functorial not only on the category Corr0(C) which
includes SmProj/C, but also on a further category.

We are going to axiomatize a sub-cohomology

Hk(X)

of total Betti cohomology H(X;Q), indexed by each whole number k. They
will be called leveled sub-cohomology at level k. Then to a pair of lev-
eled sub-cohomologies Hk(X),Jk′(X), we give a sufficient condition for the
intersection number pairing between them to be non-degenerate. The non-
degeneracy gives the symmetry mentioned above. We call the non-degeneracy
the algebraic Poincaré duality, abbreviated as APD. The primary targets are
two non-trivial examples. They are

(1) algebraically leveled filtration Nk(X) of total cohomology H(X;Q)
at level k,
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(2) Hodge leveled filtration Mk(X) of total cohomology H(X;Q) at
level k.

They are filtrations of Q-subspaces of the total cohomology H(X;Q).
Briefly Nk(X) is defined to be the linear span of all cohomology classes

α ∈ H(X;Q) supported on an algebraic set of dimension k+dimR(α)
2

, and
Mk(X) is defined to be the linear span of Q-subspaces of all sub-Hodge
structures of level k. It is known that they form two ascending filtrations on
H(X;Q)

N0(X) ⊂ N1(X) ⊂ · · · ⊂ H(X;Q). (1.1)

M0(X) ⊂M1(X) ⊂ · · · ⊂ H(X;Q) (1.2)

and
Nk(X) ⊂Mk(X).

In this paper we initiate a study of a duality among the leveled sub-
cohomology at each level k, which include

(a) APD1, a self duality within Nk,
(b) APD2, a duality between Nk and Mk,
(c) APD3, a self duality within Mk.

2 Functor of leveled sub-cohomology

Definition 2.1. (Double functor) Let A be a category and B be another
category. Let

η : A → B (2.1)

be a map equipped with two functors, covariant η1 and contravariant η2. We
call η a double functor.

For the convenience, without a further explanation, we use X to denote
a smooth projective variety of dimension n over C.
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Definition 2.2. Let Corr(C) be the category,
(a) whose objects are smooth projective varieties over C,
(b) whose morphisms from X → Y are rational correspondences

〈Z〉 ∈ CH(X × Y ;Q)

(c) whose compositions are the compositions of correspondences.

It is easy to check the graph of identity map is the identity of the category
and the associativity of correspondence is the associativity of the morphism.
This should not be compared with Cor(C) of finite correspondences ([6]).

Definition 2.3. Let Corr(C, P ) be the category, whose objects are pair of
X ∈ Corr(C), a polarization u ∈ H2(X;Q), and

HomCorr(C,P ) = HomCorr(C).

Definition 2.4. Let H(·;Q) the Betti cohomology of a smooth variety over C.
We define a double functor, also denoted by H(·;Q) on Corr(C) as follows.

(a)
Corr(C) → Linear spaces/Q.

X → H(X;Q)
(2.2)

(b) For any morphism 〈Z〉 ∈ CH(X×Y ;Q) where Z is an algebraic cycle
in X ×Y , we let PX , PY be the projections from X ×Y to X, Y respectively.
Then there is a morphism,

H(Y ;Q) → H(X;Q) (2.3)

defined by
〈Z〉∗(α) = (PX)∗((1⊗ α) ∪ 〈Z〉)

where (PX)∗ is the integration along the fibre (because PX is a flat morphism).
Notice (PX)∗ coincides with the Gysin homomorphism (PX)! induced by PX .
This is the contravariant functor on H(X;Q). Similarly we define another
morphism

H(X;Q) → H(Y ;Q) (2.4)

by
〈Z〉∗(α) = (PY )∗((α⊗ 1) ∪ 〈Z〉).

This is the covariant functor. Thus the cohomology H(·;Q) is a double func-
tor. These two functors on the cohomology usually are not inverse to each
other. They operate on different degrees.
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Remark Double functor here is the union of two functors on the same
object. The push-forward 〈Z〉∗ is just the pull-back with the transpose,
(〈Z〉t)∗.

Notice the cohomology H(·;Q) is commonly known as a contravariant
functor on the different category SmProj/C, the smooth projective varieties
over C,

SmProj/C → Linear spaces/Q.
X → H(X;Q)

(2.5)

If coupled with Gysin homomorphism, it is also a double functor.

In the following we define a sub-functor of the cohomology H(·;Q).

Corr(C) → Linear spaces/Q. (2.6)

where Corr(C) is the category of correspondences.

Definition 2.5.
Let k be a whole number, a leveled sub-cohomology at the level k is a

double functor

Hk(·) : Corr(C) → Linear spaces/Q (2.7)

satisfying
(1)

Hk(·) ⊂ H(·;Q). (2.8)

(2) For X with n < k where n = dimC(X),

Hk(X) = H(X;Q). (2.9)

For X with n ≥ k,

Hk(X) ⊂
r=n−k∑
r=0

H2r+k(X;Q). (2.10)
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(3) For each X,

Hk(X) ∩
∑

r∈[0,k]∪[2n−k,2n]

Hr(X;Q) =
∑

r∈[0,k]∪[2n−k,2n]

Hr(X;Q). (2.11)

(4) Künneth decomposition: for X, Y in Corr(C),

K : Hk(X)⊗Q Hk′(Y ) → Hk+k′(X × Y ), (2.12)

where K is the Künneth isomorphism.
A cohomology class in Hk(X), or its representative will be called an Hk

leveled cycle (or class).

Remark The word “level” is due to the condition (3), which is the key.
An equivalent notion is the coniveau. However the coniveau will not reveal
the duality, called algebraic Poincaré duality defined below.

A functor Hk on Corr(C) is extended to Corr(C, P ) by adding the
polarization u. In the following we identify Hk on both categories. Let
(X, u) ∈ Corr(C, P ).

Use ui for the linear map

H•(X;Q) → H•+2i(X;Q)
α → α ∪ ui. (2.13)

In the context, we use the same notation ui to denote its restrictions.
Use V to denote the generic hyperplane section that represents the class u.
However u is not a functor.

Definition 2.6. Let Hk be a leveled sub-cohomology.
For any X ∈ Corr(C, P ), primitive leveled sub-cohomology is defined to

be

Hk,prim(X) = Hk(X) ∩
(∑

p≤nH
p
prim(X;Q) +

∑
p>n u

2p−nHp
prim(X;Q)

)
.

We’ll denote ∑
p≤n

Hp
prim(X;Q) +

∑
p>n

up−nH2n−p
prim (X;Q)
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by
Hprim(X).

Both Hk,prim(−), Hprim(−) are not functors of Corr(C, P ).

Remark Notice cycles in Hk,prim(X) for p > n are not the conventional
primitive cycles.

Definition 2.7. Algebraic Poincaré duality (APD)
(a) Let Hk,Jk be two leveled sub-cohomology functors. For each X, if the

intersection pairing on
Hk(X)× Jk(X). (2.14)

is a perfect pairing. We say the algebraic Poincaré duality, abbreviated as
APD, holds on these two leveled sub-cohomology functors. By the Poincaré
duality this pairing has to be between

(Hk(X) ∩H i(X;Q))× (Jk(X) ∩H2n−i(X;Q)). (2.15)

(b) If the intersection pairing on

Hk,prim(X)× Jk,prim(X). (2.16)

is a perfect pairing, we say the primitive APD on Hk,Jk holds.

3 Convineau Filtration

Algebraically leveled filtration is a filtration re-grouped from the coniveau
filtration. While we review the well-known definitions below, we’ll give an-
other description using currents. Recall that in [4], Grothendieck created
a filtration Filt′p, called “Arithmetic filtration, as it embodies deep arith-
metic properties of the scheme ”. This later was referred to as the coniveau
filtration.

NpH2p+k(X) = Nk(X) ∩H2p+k(X;Q).

It is defined as a linear span of kernels of the linear maps

H2p+k(X;Q) → H2p+k(X −W ;Q) (3.1)
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for a subvariety W of codimension at least p. This is the cohomological view.
In the same paper, Grothendieck immediately interpreted it as a linear span
of images of Gysin homomorphisms

Hdim(W )+2p+k−2n(W̃ ;Q) → H2p+k(X;Q) (3.2)

for a subvariety W of codimension at least p with a smooth resolution W̃ .
This is a view of mixed Hodge structures ([1]). We’ll use another interpre-
tation of the coniveau filtration. It is through currents, which are known to
unite both homology and cohomology. Let D′(X) be the space of currents
over R on X. Let CD′(X) be its subset of closed currents and ED′(X) be
its subset of exact currents. Then

CD′(X)

ED′(X)
=
∑
i

H i(X;C). (3.3)

There is a restriction map on currents

R : D′(X) → D′(X −W ) (3.4)

for a subvariety W .
Using the formulas (3.3) and (3.4), we define

DpH2p+k(X)

to be the linear span of classes in H2p+k(X;Q) such that they lie in

CD′(X) ∩ kernel(R)

ED′(X) ∩ kernel(R)
. (3.5)

for some W of codimension at least p.

We have the following description of the coniveau filtration.

Proposition 3.1. Let X be a smooth projective variety over C. Then

DpH2p+k(X) = NpH2p+k(X). (3.6)

It says that the cohomology class α lies in

NpH2p+k(X) (3.7)

if and only if it is represented by a current whose support is contained in an
algebraic set of codimension at least p.
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Proof. By the definition

DpH2p+k(X) ⊂ NpH2p+k(X). (3.8)

Let’s see the converse.
If α ∈ NpH2p+k(X), by Cor. 8.2.8, [1], α is the Gysin image

Hdim(A)+2p+k−2n(W̃ ;Q) → H2p+k(X;Q) (3.9)

for some algebraic subvariety W of codimension at least p. By the definition
of the Gysin homomorphism there is a singular cycle σ in W̃ such that the
image of σ under the map

ρ : W̃ → X

is Poincaré dual to α. Since the support of the current ρ∗([σ]) is in W , the
cohomology class satisfies

ρ∗(〈σ〉) ∈ kernel(R).

Thus the current

ρ∗([σ])

is reduced to an element of

DpH2p+k(X).

This completes the proof.

Verification of axioms for leveled sub-cohomology will be completed in
section 5.

4 Maximal sub-Hodge structure

Definition 4.1. Let Λ ⊂ H2p+k(X;Q) be a sub-group. If

ΛC = Λp,p+k ⊕ Λp+1,p+k−1 ⊕ · · · ⊕ Λp+k,p
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where Λi,j are subspaces of H i,j(X;C). Then ΛQ is said to be a sub-Hodge
structure of the Hodge structure on H2p+k(X;Q). Let

MpH2p+k(X)

be the linear span of subspaces ΛQ for all sub-Hodge structures

ΛQ ⊂ H2p+k(X;Q).

The index p is called the coniveau, and k is called the level.

Above corollary of Deligne shows

NpH2p+k(X) ⊂MpH2p+k(X).

Proposition 4.2. Let X, Y be two smooth projective varieties over C. Let
Z be an algebraic cycle in X×Y of a pure dimension, and 〈Z〉 ∈ CH(X×Y )
be it class in the Chow group. Then 〈Z〉∗ and 〈Z〉∗ on the cohomology will
preserve the level.

Proof. The pull-back and push-forward operation on cohomology induced
from the correspondence 〈Z〉 , are morphisms of Hodge structures. As it
known that the difference between i, j for any (i, j) type of cohomology class
will be preserved under any morphism of Hodge structures, the level k is
defined to be the maximal difference of i, j for all classes in the sub-Hodge
structures. Thus it must be preserved under Z.

Verification of axioms for leveled sub-cohomology will be completed in
section 5.

5 Examples of leveled sub-cohomology

First we make a general claim. Let Z ⊂ X be an embedding of a smooth
variety Z into another smooth variety X over C. Let K be a smooth sub-
variety of X such that K,Z intersect transversally at a smooth subvariety
W . Let ωx⊂y denote the cohomology Poincaré dual to the submanifold x in
manifold y. Let j : Z ↪→ X be the inclusion map.
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Lemma 5.1. Then
j∗(ωZ⊂X) = ωW⊂Z . (5.1)

Proof. Because the intersection W = K ∩ Z is transversal. The normal
bundles satisfying

NW/Z ⊂ NZ/X . (5.2)

Furthermore the following diagram commutes

NW/Z

ψ
↪→ NZ/X

↓ ↓
W ↪→ Z.

(5.3)

Let ηZ , ηW be the Thom classes of bundles NZ/X → Z and NW/Z → W .
Then

ψ∗(ηZ) = ηW . (5.4)

Let’s embed the formula (5.3) into the tubular neighborhoods of W ⊂ Z and
Z ⊂ X. Then formula (5.4) becomes (5.1). This completes the proof.

Proposition 5.2.
Let X, Y ∈ Corr(C). Let V be a hyperplane of the projective space con-

taining X, and u be its Poincaré dual.
(1) The map ı∗

ı∗ : H(X;Q)→ H(X ∩ V ;Q)

induced by the inclusion
ı : X ∩ V ↪→ X

satisfies
ı∗(Hk(X)) ⊂ Hk(X ∩ V ). (5.5)

(2)
u(X) ∪Hk(X) ⊂ Hk(X). (5.6)

(3) Let Y
i→ X be a regular map. Denote the Gysin homormorphism by

i!. Then
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i!(Hk(Y )) ⊂ Hk(X). (5.7)

and
i∗(Hk(Y )) ⊂ Hk(X).

Proof. It suffices to show all these maps are realized by correspondences.

(1) Let ∆V,X be the subvariety in (X ∩ V )×X,

∆V,X = {(x, x) : x ∈ X ∩ V }.

Then we have
∆V,X ⊂ (X ∩ V )×X
↓ ↓j

∆X ⊂ X ×X.
(5.8)

Then we use lemma 5.1 to obtain that

j∗(ω∆X⊂(X×X)) = ω∆V,X⊂(X∩V )×X . (5.9)

Since
ω∆X⊂(X×X) = 〈∆X〉

ω∆V,X⊂(X∩V )×X = 〈∆V,X〉.

(2) Let ∆V be the diagonal in X ×X,

∆V = {(x, x) : x ∈ V }.

Then
〈∆V 〉 = 〈∆V 〉 ∪ u ∪ u∗. (5.10)

where u∗ is the dual. Then we check

〈∆V 〉∗(α) = u ∪ (α)

for any cohomology class α ∈ H(X).



5 EXAMPLES OF LEVELED SUB-COHOMOLOGY 13

(3) Let
Gi ⊂ Y ×X

be the graph of the map i. The Gysin homomorphism in section 7, is Poincaé
daul to the induced map on the singular homology

Hp(Y )
i∗→ Hp(X). (5.11)

The homomorphism i∗ can be expressed as the map i# on singular chains.
Next we use simplicial complexes of each space. Let SY be a triangulation
of Y . This naturally induces a triangulation SG of Gi. Then i# is the

(PY )#((c×X) ∩ S)

where c is a cycle in SY , and X is a complex containing the images of all SY .
Then we reduce them to homology to obtain that

i∗ = (PY )∗(〈c〉 ∩ 〈Gi〉). (5.12)

Applying the Poincaré duality to (5.12), we complete the proof for the
Gysin homomorphism. To see the pullbaclk i∗, let ωGi be the Poincaré dual
of Gi in Y ×X. Then the pullback i∗(β) of the cohomology β ∈ Hp(X;Q)
is the same as

(PY )∗(ωGi · (1⊗ β)). (5.13)

(This is an assertion for any differentiable map).

Proposition 5.3. Let H• be a leveled sub-cohomology.

Hk ⊂ Hk+1. (5.14)

Proof. Let X, Y ∈ Corr(C). By the Künneth decomposition

K : Hk(X)⊗Q H1(Y ) ⊂ Hk+1(X × Y ). (5.15)

Notice by the definition the fundamental class 1Y ∈ Hl(Y ) for any whole
number l. In particular

1Y ∈ H1(Y ).
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Thus by (2.12)

K(Hk(X)⊗ {1Y }) ⊂ Hk+1(X × Y ). (5.16)

Let
ν∗ : H(X × Y ) → H(X) (5.17)

be the restriction of cohomology to X × {y} where y ∈ Y is a point. By
proposition 5.2, ν∗ preserves the level of the cycles. Then we have composi-
tion

Hk(X) → Hk+1(X × Y ) → Hk+1(X). (5.18)

In cohomology, the composition is simply the identity map. The proposition
is proved.

Remark This shows a leveled sub-cohomology is an ascending filtration
on cohomology.

Proposition 5.4. We make a convention that

N iH2i+k(X) =


N iH2i+k(X) for i ∈ [0, dim(X)− k]

0 for 2i+ k 6∈ [0, 2dim(X)]
H2i+k(X;Q) for 2i+ k ∈ [0, k] ∪ [2dim(X)− k, 2dim(X)]

(5.19)
The following sum of coniveau filtration

+∞∑
r=−∞

N rH2r+k. (5.20)

gives a rise to a leveled sub-cohomology at the level k. We’ll name it as
algebraically leveled filtration and denote it by Nk. Notice that

Nk(X) ∩H2r+k(X;C) = N rH2r+k(X).

Furthermore applying Cartesian product, we obtain that N• forms a fil-
tration of leveled sub-cohomology.
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Proof. Fix a whole number k. We consider the map

Corr(C) → Linear spaces/C
X → Nk(X).

(5.21)

The morphisms are the restrictions of the double functors. Next we show
it is covariant. Let X, Y,W be three projective varieties over C. Let

Z1 ∈ CH(X × Y ), Z2 ∈ CH(Y ×W ).

Then it is suffices to show the composition criterion,

(Z2 ◦ Z1)∗ = 〈Z2〉∗ ◦ 〈Z1〉∗ (5.22)

where Z2 ◦ Z1 is the composition of the correspondences.
Let α ∈ H(X × Y ×W ) be a cohomology having a homogeneous degree.

It will be sufficient to show the intersection

(Z2 ◦ Z1)∗(α) = 〈Z2〉∗ ◦ 〈Z1〉∗(α). (5.23)

We consider the triple cohomological intersection in the variety

X × Y ×W,

β = 〈Z1 ⊗ Y 〉 ∪ 〈X × Z2〉 ∪ (α⊗ 〈×X × Y 〉). (5.24)

Next we use two compositions of the same projection PXYW
W ,

PXW
W ◦ PXYW

XW , P YW
W ◦ PXYW

YW (5.25)

where the superscript indicates the domain of the projection, and the sub-
script indicates the target of the projection. Then using the projection for-
mula, we obtain the left-hand side of (5.18) is

(PXW
W ◦ PXYW

XW )∗(β) = (PXYW
W )∗(β), (5.26)

the right-hand side of (5.18) is

(P YW
W ◦ PXYW

YW )∗(β) = (PXYW
W )∗(β). (5.27)
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This proves (5.18). So the functor is covariant. Similarly its transpose is also
covariant. We conclude that

X → Nk(X)

is a double functor. Next we show both morphisms preserve the level. Let’s
first consider the pull-back. Let X, Y be any smooth projective varieties over
C. Let Z be an algebraic cycle in X × Y of complex codimension l., and

〈Z〉 ∈ CH(X × Y )

be the class in the Chow group. Let α ∈ N qH2q+k(Y ). Then by Deligne’s
corollary, there is a subvariety A ⊂ Y such that α is the Gysin image of

Hdim(A)+2p+k−2n(Ã;Q) → H2p+k(Y ;Q) (5.28)

where Ã is the smooth resolution of A. By the definition of the Gysin ho-
momorphism there is a singular cycle σ in Ã such that the image of σ under
the map

ρ : Ã → Y

is Poincaré dual to α. We may assume the intersection

Z ∩ (X × A)

is proper. Applying the definition in cohomology,

〈Z〉∗(α)

is zero outside of
PX(Z ∩ (X × A)).

This shows
〈Z〉∗(α) ∈ Np′Hq′(X;C).

Next we calculate the level p′.
Let dim(Z) = l, dim(X) = m. Notice 〈Z〉∗ sends

H2q+k(Y ;C) → H2q+k+2l−2m(X;C),

Suppose α lies in N qH2q+k(Y ). It lies in an algebraic cycle σa of complex
dimension at most

m− q,
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Choose a cycle Z ′ that is rationally equivalent to Z such that the intersection
of

Z ′ ∩ (X × σa)
is proper. Then the complex dimension of Z ′ ∩ (X × σa) is at most

m+ n− q − l

The complex dimension of the algebraic set

PX

(
supp(Z ′) ∩ (X × supp(σa)

)
is also at most

m+ n− q − l.
Since 〈Z〉∗(α) lies in

PX(supp(Z ′) ∩ (X × supp(σa)),

〈Z〉∗ sends N qH2q+k(Y ) to

N l+q−mH2q+k+2l−2m(X).

Thus the level is k. Since the other morphism is the transpose of the same
correspondence, the proof for the push-forward is identical after the change
of the order of X and Y .

Thus Nk is a double functor. The conditions (1), (2) and (4) are obvious.
Since any cycle lies in X,

N0Hk(X) = Hk(X;C).

Because of the hard Lefschetz theorem ( 7, §0, [3]), for k < n, any k cycle
lies in a plane section of codimension k. Hence

Nn−kH2n−k(X) = H2n−k(X;C).

By the Poincaré duality the condition (3) is proved. So the functor is
leveled. By Künneth decomposition,

Nk(X)⊗Nk′(X) ⊂ Nk+k′(X × Y ).

Thus N• is a filtration of leveled sub-cohomology.
This completes the proof.
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Proposition 5.5. Let’s have the same convention that

M iH2i+k(X) =


M iH2i+k(X) for i ∈ [0, dim(X)− k]

0 for 2i+ k 6∈ [0, 2dim(X)]
H2i+k(X;Q) for 2i+ k ∈ [0, k] ∪ [2dim(X)− k, 2dim(X)]

(5.29)
The sum of maximal sub-Hodge structure

+∞∑
r=−∞

M rH2r+k(X). (5.30)

is a leveled sub-cohomology at a fixed level k. We name it as Hodge leveled
filtration and denote this functor by Mk. Notice

Mk(X) ∩H2r+k(X;C) = M rH2r+k(X).

M• is a filtration of leveled sub-cohomology.

Proof. Note we defined

Mk(X) =
n−k∑
r=0

M rH2r+k(X). (5.31)

Since the induced homomorphisms are all morphisms of Hodge structures.
it gives a double functor. All conditions (1)-(4) in definition 2.4 follow.

By the tensor product of Hodge structures, M• is a filtration of leveled
sub-cohomology.

Example 5.6.
The cohomology H(·;C) itself is a leveled sub-cohomology at all levels.

This is the trivial leveled sub-cohomology, whose APD is the Poincaré duality.
Also

H(·;C) ⊂ H(·;C) ⊂ · · · ⊂ H(·;C)

forms the trivial filtration of leveled sub-cohomology.
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Example 5.7.
Let CHp

alg(X) be the Chow group of algebraic cycles algebraically equiva-
lent to zero. Then there is an Abel-Jacobi map

AJ : CHp
alg(X) → Jp(X) (5.32)

Let Jpa be its image. Since it is a sub-torus, the tangent space TJpa is contained
in Hp−1,p(X;C). We let

H2p−1
a (X;C) = TJpa ⊕ TJ

p
a . (5.33)

It was proved in [8], H2p−1
a (X;C) has a sub-Hodge structure. So there is a

subspace
H2p−1
a (X;Q) ⊂ H2p−1(X;Q)

such that
H2p−1
a (X;C) ' H2p−1

a (X;Q)⊗ C,
and

H2p−1
a (X;C)

is called algebraic part of cohomology. It is known that

H1(X;Q) = H1
a(X;Q), H2n−1(X;Q) = H2n−1

a (X;Q).

Therefore according to the definition 2.4, the algebraic part of cohomology∑
i=odd

H i
a(·;Q)

defined by Murre is a leveled sub-cohomology at level 1.

Actually Murre went further and showed that∑
i=odd

H i
a(·;Q) = N1. (5.34)

Example 5.8.
The image of cycle maps,

A(·) =
∑
i

Ai(·)

is a leveled sub-cohomology N0 at level 0.
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Example 5.9.
Primitive cohomology Hprim is not a leveled sub-cohomology.
Primitive leveled sub-cohomology is a not leveled sub-cohomology.
So they are not functors.

Example 5.10. Let X be a smooth projective variety defined over C. Let
τ ∈ Gal(C/Q). Then there is another smooth projective variety Xτ over
C defined by ideal τ(I(X)) where I(X) is the ideal defining X. See [9] for
detailed discussion.

Through the algebraic de Rham cohomology, we obtain the isomorphism

τ : H•(X;C) → H•(Xτ ;C), (5.35)

where the τ is induced from the isomorphism of the algebraic de Rham coho-
mology. So τ is an isomorphism of C linear spaces, but it is not an isomor-
phism of the Q linear spaces.

We call the subgroup

ApτH
2p+k(X) ⊂ H2p+k(X;Q) (5.36)

the relative leveled sub-cohomology at level k, if ApτH
2p+k(X) is the maximal

sub-space of H2p+k(X;Q) such that

τ

(
ApτH

2p+k(X)

)
⊂MpH2p+k(X)⊗ C. (5.37)

We defined the absolute leveled sub-cohomology ApH2p+k(X) to be the
intersection

∩τ∈Gal(C/Q)A
p
τH

2p+k(X).

Let Y be another smooth projective variety over C. Let Z be an alge-
braic correspondence between X and Y . Then Zτ will defined an algebraic
correspondence between Xτ , Yτ . Then we have two commutative diagrams

H(X;C) → H(Xτ ;C)
↓〈Z〉∗ ↓〈Zτ 〉∗

H(Y ;C) → H(Yτ ;C)
(5.38)
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H(X;C) → H(Xτ ;C)
↑〈Z〉∗ ↑〈Zτ 〉∗

H(Y ;C) → H(Yτ ;C).
(5.39)

These diagram imply that

ApH2p+k(X), ApτH
2p+k(X)

both form leveled sub-cohomology. Precisely if we let Aτ,k be a double functor
with

Aτ,k(X) =
+∞∑
p=−∞

ApτH
2p+k(X). (5.40)

(use a convention as in Nk) and Ak be a double functor with

Ak(X) =
+∞∑
p=−∞

ApH2p+k(X). (5.41)

Then they both are k leveled sub-cohomology.

Since τ preserves the Hodge filtration,

Nk ⊂ Ak ⊂Mk. (5.42)

But for arbitrary τ ∈ Gal(C/Q), there is only

Nk ⊂ Aτ,k. (5.43)

Notice that
N0 ⊂

∑
i

AH i ⊂ A0 ⊂
∑
i

Hdgi,

where AH is the space of Deligne’s absolute Hodge cycles.

Remark
In the examples, we have the relations

Nk ⊂Mk ⊂ H(·;Q)

and
Nk ⊂ Ak ⊂ Aτ,k ⊂ H(·;Q).

Hodge conjecture leads to a question: is N• a non trivial, maximal leveled
sub-cohomology?
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6 APD on leveled sub-cohomology

We consider the category of polarized varieties, Corr(C, P ).

Theorem 6.1. If the primitive APD on a pair of leveled sub-cohomology
holds, then APD holds on the pair .

Let’s start with an easy lemma which may be well-known (see, for in-
stance, (4.6), [10]).

Lemma 6.2. Let V and Z be two smooth projective varieties over C. Let

i : Z → V

be the inclusion map. Let θ ∈ H•(V ;Q) be cohomology class. ωZ ∈ H•(V ;Q)
be the Poincaré dual of Z in V . Then

(a)
i!i
∗(θ) = θ · ωZ . (6.1)

(b) for any cohomology η ∈ H•(V ;Q), the intersection numbers satisfy

(η, ωZ , θ)V = (i∗(η), i∗(θ))Z . (6.2)

Proof. (a) We use de Rham cohomology. Let’s denote the de Rham repre-
sentatives of θ and ωZ by the same letter θ and ωZ . Let φ be a closed C∞

form on V . Then it suffices to show∫
V

i!i
∗(θ) ∧ φ =

∫
V

θωZ ∧ φ. (6.3)

Since both sides of (6.1) equals to∫
Z

θ ∧ φ

we complete the proof of (a).
(b) As above we use de Rham cohomology. Then according part (a) left

hand side of (6.2) is ∫
Z

η ∧ θ.
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Using the intersection in de Rham cohomology, right hand side of (6.2) is
also ∫

Z

η ∧ θ.

This completes the proof of (b)

Definition 6.3. (Plane-sectional decomposition). Let Hk be a leveled sub-
cohomology. Let

Hk = L0 ⊕ L1 · · · ⊕ · · · (6.4)

where
Li

is a direct sum complement of ker(ui|Hk) in the ker(ui+1|Hk),

Li ⊕ ker(ui|Hk) = ker(ui+1|Hk)

where the decomposition is not unique. So for each X ∈ Corr(C, P ), Hk(X)
will be decomposed into finitely many Li(X).

Remark The decomposition is not unique.

Proof. of theorem 6.1: Let p, k be two fixed whole numbers. Let Hk,Jk be
two leveled sub-cohomologies.

We’ll use the notations

Hi
k = Hk ∩H i(·;Q)
J i
k = Jk ∩H i(·;Q).

.

Then we apply induction on the dimension of X. When dim(X) is the
smallest for p, k, which is p+k

2
. Then both

Hp
k,J

2n−p
k

are back to the usual cohomology H•(X;Q). By the rational Poincaré du-
ality, the APD holds. Next we assume APD holds for dimC(X) < n − 1.
Consider the X with dimC(X) = n. It suffices to prove that

Hp
k(X)

P→ (J 2n−p
k (X))∨ (6.5)
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is surjective, where P is the map induced from the intersection form.
Next we consider two cases:
(1) p > n. Let’s recall our goal: for any given α ∈ Hp(X;Q), we need to

find Hk leveled αa such that

(αa, ω)X = (α, ω)X . (6.6)

for all ω ∈ J 2n−p
k (X). In this statement we regard the intersection pairing

(α, •)X as an element in (J 2n−p
k (X))∨.

By the hard Lefschetz theorem, the class

α = u ∪ β. (6.7)

where α ∈ Hp(X;Q), β ∈ Hp−2(X;Q). Then applying lemma 6.2, we have
the triple intersection number

(β, u, ω)X = (βY , ωY )Y ,

where Y is a smooth hyperplane section of X and (•)Y is the restriction of
the cohomology to Y . By the induction, since ωY is Jk-leveled, there is an
Hk leveled cycle αY , such that

(βY , ωY )Y = (αY , ωY )Y . (6.8)

Let i! be the Gysin homomorphism from

H•(Y ;Q)→ H•+2(X;Q)

which maps cycles leveled at k to cycles at the same level. Then applying
lemma 6.2 again, we obtain(

i!(αY ), ω

)
X

= (αY , ωY )Y = (α, ω)X . (6.9)

Thus i!(αY ) is the Hk leveled cycle we are looking for.

(2) p ≤ n. We need to first decompose (J 2n−p
k (X))∨. This is originated

from the decomposition in definition 6.3, the plane-sectional decomposition,

J 2n−p
k (X) = L0(X)⊕ L1(X) · · · ⊕ L[ p−1

2
](X). (6.10)
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By the topological Poincaré duality we always have the surjective map

P : Hp(X;Q) → (Li(X))∨

α → α ∩ (•) (6.11)

for each 0 ≤ i ≤ [p−1
2

].
Due to the definition of Li(X), the map

Li(X)
ui→ H2n−p+2i(X;Q). (6.12)

is injective. Therefore the dual map which is still denoted by ui,

Hp−2i(X;Q)
ui→ (Li(X))∨ (6.13)

is surjective.
Hence

⊕[ p−1
2

]

i=1 Hp−2i(X;Q)
∑
i u
i

→ ⊕[ p−1
2

]

i=1 (Li(X))∨ (6.14)

is also surjective.
Let Y be a smooth subvariety such that

[Y ] = V i ∩X, (6.15)

where 1 ≤ i < n. Thus Y is also an irreducible, smooth projective variety.
Then for any ω ∈ Li(X), i 6= 0, we consider the triple intersection number

(αi, u
i, ω)X (6.16)

Using lemma 6.2, we obtain that

(αi, u
i, ω)X = (αi,Y , ωY )Y (6.17)

where (·)Y is the restriction of the cohomology to its submanifold Y . Notice
ωY is the pull-back of ω which must be Jk-leveled and Y has dimension lower
than n. By the induction, we obtain a Hk-leveled cycle αai,Y in Y such that,

(αai,Y , ωY )Y = (αi,Y , ωY )Y . (6.18)

Let i! be the Gysin homomorphism from

H•(Y ;Q)→ H•+2i(X;Q)
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which maps cycles leveled at k to cycles leveled at k. Then applying lemma
6.2 again, we obtain(

i!(α
a
i,Y ), ω

)
X

= (α, ui, ω)X = ψi(uiω), (6.19)

where i!(α
a
i,Y ) is Hk-leveled. This show the surjectivity of the map

Hp
k(X)

P→ (⊕i 6=0Li(X))∨. (6.20)

Now we work with (L0(X))∨. Let ω ∈ L0(X) be the testing cycle. As
before we consider α0 ∈ Hp(X;Q) that represents an element in (L0(X))∨.

For any such α0, there is the Lefschetz decomposition

α0 = α0
0 +

∑
l≥1

ulαl0. (6.21)

Using the same inductive argument above, we obtain aHk leveled cycle α0(1)
such that

(α0(1), ω)X = (
∑
l≥1

(ulαl), ω)X , (6.22)

for any ω ∈ L0(X). By Lefschetz decomposition

ω = un−pωp + un−p+1ωp−2 + · · ·+ un−p+[ p
2

]ωp−2[ p
2

]. (6.23)

where ωj ∈ Hj
prim(X;Q). Notice ωui = 0 for all 1 ≤ i ≤ [p−1

2
]. Hence all

primitive cycles
ωp−2 = ωp−3 = · · · = ωp−2[ p

2
] = 0.

Therefore
ω = un−pωp (6.24)

where ωp is primitive. By the assumption of primitive APD (notice ω =
un−pωp is Jk leveled), there is a primitive, Hk leveled cycle α0(2) such that

(α0(2), ω)X = (α0
0, ω)X . (6.25)

Thus
(α0(1) + α0(2), ω)X = (α0, ω)X . (6.26)
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Now we combine all components in the decomposition

(J 2n−p
k (X))∨ = (L0(X))∨ ⊕ · · · ⊕ (L[ p−1

2
](X))∨. (6.27)

For any element ψ ∈ (J 2n−p
k (X))∨, it is decomposed as

[ p−1
2

]∑
i=0

ψi (6.28)

where ψi ∈ (Li(X))∨ and ψi can be represented through intersection form
by the cycles αi. Then we can find the Hk leveled cycle

α0(1) + α0(2) +
∑
i 6=0

i!(α
a
i,Y ) (6.29)

such that its Poincaré dual is ψ. We complete the proof.

7 Glossary

(1) If X
i→ Y is a continuous map between two real compact manifolds,

then the induced homomorphism i! in the graph,

Hp(X;Q)
i∗→ Hp(Y ;Q)

Poincaré

~www�duality Poincaré

~www�duality

Hdim(X)−p(X;Q)
i!→ Hdim(Y )−p(Y ;Q)

(7.1)

will be called Gysin homomorphism.
(2) Mp,2p+k(X) is the maximal sub-Hodge structures of coniveau p at level

k.
(3) NpH2p+k(X) is the coniveau filtration of coniveau p at level k.
(4) Hdg

•
(X) is the subspace spanned by Hodge classes.

(5) A•(X) is the subspace of the rational cohomology, spanned by
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algebraic cycles.
(6) a∨ denotes the dual of a vector space if a is a vector space or a

vector.
(7) a∗ denotes a pullback in various situation depending on the

context.
(8) a∗ denotes a pushforwad in various situation depending on the

context.
(9) 〈a〉 denotes a classes in various groups represented by an object a.
(10) (·, ·)X is the intersection number in X between a pair of the same

or/and different types of objects.
(11) (·, ·, ·, ....)X denotes the intersection number among multiple objects.
(12) CH denotes the Chow group, CHalg denotes the subgroup of cycles

algebraically equivalent to zero.
(13) J denotes the intermediate Jacobians.
(14) We’ll drop the name “Betti” on the cohomology. So all cohomology

are Betti cohomology.
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