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Abstract

We prove the following results. If X3 is a generic Calabi-Yau com-
plete intersection of dimension 3,

(1) then for each natural number d there exists a rational map
c ∈ Hombir(P

1, X3) of deg(c(P1)) = d,
(2) further more all such c are immersions satisfying

Nc(P1)/X3
' OP1(−1)⊕OP1(−1). (0.1)
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1 Statement

In mirror symmetry there is a general consensus that a “generic” Calabi-
Yau 3-fold over C should contain and only contain finitely many irreducible
rational curves of each degree with respect to the polarization. In this paper
let’s consider the case of complete intersections.

Theorem 1.1.
Let X3 be a generic, Calabi-Yau complete intersection of dimension 3

over C.
Then
(1) X3 admits an irreducible rational curve C of each degree,
(2) all such C ⊂ X3 are immersions and the normal bundle NC/X3 is

isomorphic to

OP1(−1)⊕OP1(−1). (1.1)

2 Sketch of the proof

2.1 Setting

Throughout the paper rational curves are curves rationally parametrized by
P1. The image is called an irreducible rational curve.

Rational curves on projective varieties has been a topic for many decades.
The general theory which has its own technique is not the focus of this paper.
Instead we are interested in a specific type of problems with a quite different
technique.
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Focus 2.1. Which generic complete intersection X admits an irreducible
rational rational curve C of each degree?

Focus 2.2. Once the first question is affirmative, what is the normal sheaf

NC/X? (2.1)

Theorem 1.1 tries to answer these two questions in the case of Calabi-Yau
3-folds.

The idea of the work starts from and stays in a down-to-earth setting,
which employees linear algebra only. The method first converts the invariant
expression of Theorem 1.1 to a variant expression as the content of Theorem
1.1 stays the same. Then it explores the unique linear algebra in the variant
setting to reach an algebraic result. At last it converts the algebraic result
back to the invariants. In technique the first conversion

Invariant⇒ V ariant (2.2)

uses classical geometry. The second conversion

Variant⇒ invariant (2.3)

uses Clemens’ deformation idea [1].

Let’s start with this alternative setting. Let

Md = (H0(OP1(d))⊕(n+1) ' C(n+1)(d+1). (2.4)

The open set Mbir,d of Md represents (but is not equal to)

{c ∈ Hombir(P
1,Pn) : deg(c(P1)) = d}.

Let
gi, i = 1, · · · , r = n− 3

be sections in H0(OPn(hi)) and

r∑
i=1

hi = n+ 1. (2.5)
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Let
Xi = ∩k=n−ik=1 div(gk). (2.6)

In this paper, the Cartesian product

(g1, · · · , gn−i)

is also called a complete intersection of type (h1, · · · , hn−i). So

X3 = ∩ri=1div(gi) (2.7)

is a complete intersection Calabi-Yau 3-fold in the usual sense for generic

(g1, · · · , gr) ∈
r∏
i+1

H0(OPn(hi)).

Choose distinct hid+ 1 points tij ∈ P1. Let

ti = (ti1, · · · , tihid+1) ∈ Symhid+1(P1). (2.8)

In the rest of the paper, we’ll use following conventions in affine coordinates.
(a) tij or t denotes a complex number which is a point in an affine open

set C ⊂ P1,
(b) c(t) denotes the image

C c→ C(n+1)(d+1)

t → c(t),

(c) gi ∈ H0(OPn(hi)) is a homogeneous polynomial of degree hi in
n+ 1 variables.

We should note that in these affine coordinates, the incidence relation
c∗(gi) = 0 can be expressed as the composition gi(c(t)) = 0 for all

t ∈ C.

Let CM be a system of affine coordinates for Md, which determines an iso-
morphism

Md ' C(n+1)(d+1).

We define a system of polynomials in the variable c ∈Md

gi(c(t
i
j)), i = 1, · · · , r, j = 1, · · · , hid+ 1. (2.9)
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Then the subsets of polynomials

g1, · · · , gl, l ≤ r

give a rise to a holomorphic map µl

µl : Md ' C(n+1)(d+1) → Cmld+l, (2.10)

where ml =
∑l

i=1 hi. We”ll denote

Il = µ−1l (0) (2.11)

which will be called the incidence scheme of rational curves on the complete
intersection of g1, · · · , gl. Then the differential map (µl)∗ is represented by
the Jacobian matrix of size(

mld+ l

)
×
(
n+ 1

)(
d+ 1

)
denoted by Jl, which depends on gi, t

j. However once the points tj are fixed,
the matrix Jl is well-defined and varied algebraically on the entire affine space
Md × A, where A ⊂

∏
i P(H0(OPn(hi))) is affine. We call it the Jacobian

matrix of the incidence scheme Il.
The scheme Il, which could be reducible with multiple dimensions,1 is

the alternative to various moduli spaces of rational curves and maps. In
this paper we show a methodology in the calculation of the Jacobian matrix
Jl at a point of Il corresponding to an irreducible rational curve on generic
complete intersections. The components containing such points always have
the smallest dimension as expected. They correspond to the components
that have actual fundamental classes instead of virtual fundamental classes
in Mirror symmetry. The methodology is rooted in a specific pattern of the
Jacobian matrix Jl modeled on the Vandermonde matrices.

In general we are interested in the following questions,
(1) what is the dimension of Il?,
(2) is it reduced?
(3) is it irreducible, and if not, what is the structure of each component?
Answers to these questions would solve some technical problems in Mirror

symmetry, that have been left out of the physics’ formulation. Thus it is an

1For instance, it contains the components of multiple covering maps of P1.
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alternative to patch some holes in the general mathematical theory. The
complete answers to these questions are out of scope of this paper. Here
we are going to use linear algebra to explore the dimension of Il for some
complete intersections.

2.2 Existence

In the first part, we prove the existence of irreducible rational curves C on
a generic complete intersection Calabi-Yau 3-fold X3. We avoid a direct
construction.

(I) First we’ll use the proven existence of irreducible rational curves of
arbitrary degrees on a single generic hypersurface of lower degrees (which
are Fano). After its extension to a special complete intersection in Pn by
joining more Fano hypersurfaces, we use linear algebra to glue the block
matrix for each Fano hypersurface to obtain the non-degeneracy of Jacobian
matrix Jr. This will show the existence of an irreducible rational curve C ′

of each degree on a special complete intersection Calabi-Yau 3-fold X ′3 with
the non-degenerate Jacobian J ′r at the point (C ′, X ′3).

2

(II) Applying Clemens’ deformation idea, this smooth C ′ is deformed to
generic X3 as a different irreducible rational curve C ⊂ X3. The requirement
for such a deformation is the non-degeneracy of Jacobian matrix Jl.

2.3 Rigidity

The second step is to show the normal bundle of all such irreducible curves
C ⊂ X3 are split as in (0.1). This rigidity is determined by the dimension of
the incidence scheme Ir. First we have the general study of a uniruled pro-
jective variety to deduce that a free rational curve on it has the unobstructed
deformation on its generic hypersurfaces. This no-trivial result follows from
[7] or [8]. Then we notice that the filtration of complete intersections

X3 ⊂ · · · ⊂ X0 ' Pn (2.12)

2For curves of a fixed and small degree, computer software has been used to find its
Jacobian. See p. 295, [2].
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corresponds to another filtration of subvarieties

Ir|c ⊂ Ir−1|c ⊂ · · · ⊂ I1|c ⊂ I0|c, (2.13)

where the subscript |c means the analytic neighborhood around the point c
with c(P1) = C. Then we notice all Xi for i 6= 3 are Fano, therefore uniruled.
Applying above deformation result for rational curve on uniruled varieties,
we obtain a recursive formula

dim(Il|c) = dim(Il+1|c)− (hld+ 1). (2.14)

( or equivalently dim(H0(c∗(TXl
)) = dim(H0(c∗(TXl+1

)) − (hld + 1).). Ap-
plying the Calabi-Yau condition (2.5) we obtain that

dim(Ir|c) = 4. (2.15)

(or dim(H0(c∗(TX3)) = 3).

Then the dimension dim(H0(c∗(TX3)) = 3 forces c to be an immersion
and furthermore to be rigid.

We organize the rest of the paper as follows. In section 3, we prove the
existence, and in section 4 we prove the rigidity. Appendix covers a particular
technique in linear algebra for the existence.

3 Existence of rational curves

Starting from this section we give technical proofs. This section focuses on
the existence.

We resume all notations introduced in section 1. Recall gi, i = 1, · · · , r
are sections in H0(OPn(hi)) such that n− 3 = r and n+ 1 =

∑
i hi. Let

Xl = ∩n−li=1div(gi), l ≤ r (3.1)

In particular, if

(g1, · · · , gr) ∈
r∏
i=1

H0(OPn(hi))

is generic, X3 is a smooth complete intersection Calabi-Yau 3-fold.
In this subsection, we prove part (1) of Theorem 1.1. It asserts the

existence of an irreducible rational curve of each degree d on the generic X3.
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Theorem 3.1. There exist irreducible rational curves of each degree d on
the following generic complete intersection Calabi-Yau 3-folds.

(2, 2, 2, 2) type in P7 (3.2)

(3, 2, 2) type in P6, (3.3)

(3, 3) and (4, 2) types in P5 (3.4)

(5) type, i.e.quintic 3-fold in P4. (3.5)

The case (3.5) has been proved by H. Clemens [1] and S. Katz ([3]). Let’s
consider other 3 cases. Suppose that in all 3 cases, there exist a special
complete intersection, denoted by sections g′1, · · · , g′r and a smooth rational
curve cg of degree d with c∗g(g

′
i) = 0 for all i such that the corresponding

Jacobian matrix Jr at cg has full rank. Then we divide the coordinates of
Md to two parts, cind and cfree. The partial derivatives with respect to cind
form the maximal minor block Jind in the Jacobian matrix Jr. Thus Jind is
a maximal non-degenerate block. The size of Jind is therefore(

(n+ 1)d+ r

)
×
(

(n+ 1)d+ r

)
Let the remaining coordinates of Md be cfree, and corresponding block ma-
trix in Jr is Jfree. Hence (cindcfree) are the affine coordinates of Md and
(JindJfree) = Jr. Since Jind evaluated at the special complete intersection (g′i)
and smooth cg is non-degenerate, by the implicit function theorem in complex
analysis, there exists analytic functions near cg, cind = αind(cfree, g1, · · · , gr)
(gi are locally free sections) such that

gi(c(t
i
j)) = 0, for all i, j (3.6)

where c = αind(cfree, g1, · · · , gr)cfree. In geometric term, this means that
there exists a smooth rational curve c of degree d on each same type of
complete intersection (free choice of gi) near the special one (g′i). Since
these deformed complete intersections (gi) are all generic in Zariski-topology,
we complete the proof of the existence in these cases. So in the following
subsections we are going to find such a special complete intersection in each
case.
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3.1 Complete intersection of (2, 2, 2, 2) type in P7

Proposition 3.2. There is a smooth rational curve Cg of each degree d on
a special complete intersection X3 of type (2, 2, 2, 2) in P7 such that J4|cg at
(cg, X3) is non-degenerate, where cg is the normalization of Cg.

Proof. Let [z0, · · · , z7] be homogeneous coordinates of P7. Let P3 the sub-
space defined by z4 = z5 = z6 = z7 = 0. First we consider a generic quadric
g ∈ H0(OP3(2)) in P3. By [4], Hilbert scheme Hilbc(P1)(div(g)) at a smooth
rational curve

c ∈ Hombir(P
1,Pn)

of degree d is non-empty and smooth with the expected dimension. Then
I1 is smooth at c with expected dimension. Let J ′1 be the corresponding
Jacobian matrix of I1 in P3 (as defined in the introduction). By Lemma A.2,
it has full rank. In the following we use the “gluing” technique for block
matrices to extend the Jacobian matrix J ′1 to P7. Assume c = [c0, c1, c2, c3].
It is extended to a smooth rational curve cg in P7 as follows

cg = [c0, c1, c2, c3, c0, c1, c2, c3], (3.7)

which is isomorphic to c. We define the special complete intersection of
(2, 2, 2, 2) type as follows. Let

g1 = g(by the extension),
g2 = g(z4, z5, z2, z3)
g3 = g(z0, z1, z6, z7),
g4 = z26 + z27 − z22 − z23 .

(3.8)

be four quadrics in P7. Then we have c∗g(gi) = 0 for all i.
Let θ1, θ3, θ5, θ7 be the affine coordinates for 2nd, 4th, 6th and 8th copies

H0(OP1(d)) in Md. Let V0 be the hyperplane of H0(OP1(d)), whose ele-
ments vanish at 0. Let θ0, θ2, θ4, θ6 be the affine coordinates for V0 in the
1st, 3rd, 5th, 7th components of Md. The we’ll show these variables, that are
not all variables of Md, are cind. This amounts to show that the Jacobian
matrix has full rank. Thus we first write down the blocks of Jacobian matrix.
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We let

B11 =
∂(g1(cg(t11)),··· ,g1(cg(t12d+1)))

∂(θ0,θ1)

B12 =
∂(g1(cg(t11)),··· ,g1(cg(t12d+1)))

∂(θ2,θ3)

B22 =
∂(g2(cg(t21)),··· ,g1(cg(t22d+1)))

∂(θ2,θ3)

B23 =
∂(g2(cg(t21)),··· ,g2(cg(t22d+1)))

∂(θ4,θ5)

B33 =
∂(g3(cg(t31)),··· ,g3(cg(t32d+1)))

∂(θ4,θ6)

B34 =
∂(g3(cg(t31)),··· ,g3(cg(t32d+1)))

∂(θ6,θ7)

B42 =
∂(g4(cg(t41)),··· ,gg(cg(t42d+1)))

∂(θ2,θ3)

B44 =
∂(g4(cg(t41)),··· ,g4(cg(t42d+1)))

∂(θ6,θ7)

(3.9)

Then one of maximal minor blocks Jind of the Jacobian matrix J4 ( in P7)
at cg is formed by the block matrices

Jind =


B11 B12 0 0
0 B22 B23 0
0 0 B33 B34

0 B42 0 B44

 (3.10)

We can verify that Bij in (3.10) satisfy all conditions in Lemma A.2. Further-
more all conditions in Lemma A.6 for J |cg are also satisfied. By the Lemmas
J |cg is non-degenerate. We complete the proof.

3.2 Complete intersection of (3, 2, 2) type in P6

Proposition 3.3. There is a smooth rational curve Cg of each degree d on
a special complete intersection X3 of type (3, 2, 2) in P6 such that J3|cg at
(cg, X3) is non-degenerate, where cg is the normalization of Cg.

Proof. Let z0, · · · , z6 be homogeneous coordinates of P6. Let P3 ⊂ P6 be
the subspace defined by z4 = z5 = z6 = 0. By [4], there exists a generic

g ∈ H0(OP3(2))
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such that it contains a smooth rational curve

c = [c0, c1, c2, c3]. (3.11)

We define a new smooth rational curve of degree d to be

cg = [c0, c1, c2, c3, c0, c1, c2]. (3.12)

We define hypersurfaces as

g1 = z0g(z0, z1, z2, z3) + (z0 − z4)α(z0, z1, z2, z3)
g2 = g(z4, z5, z2, z3)
g2 = g(z4, z5, z6, z3)

(3.13)

where α is a generic quadric with respect to g. Let θ1, · · · , θ7 be the affine
coordinates for 7 copies H0(OP1(d)) in Md. Let

t1 = (t11, · · · , t13d+1) ∈ sym3d+1(P1)
t2 = (t21, · · · , t22d+1) ∈ sym2d+1(P1)
t3 = (t31, · · · , t32d+1) ∈ sym2d+1(P1).

(3.14)

We write down the block matrices for the Jacobian matrix. Let

B1j =
∂(g1(cg(t11)),··· ,g1(cg(t13d+1)))

∂θj

B2j =
∂(g2(cg(t21)),··· ,g2(cg(t22d+1)))

∂θj

B3j =
∂(g3(cg(t31)),··· ,g3(cg(t32d+1)))

∂θj
.

(3.15)

Next we write down the Jacobian matrix directly as

J3 =

 B11 B12 B13 B14 B15 0 0
0 0 B23 B24 B25 B26 0
0 0 0 B34 B35 B36 B37

 (3.16)

Then we verify Bij satisfy all conditions in Lemmas A.2, A.3. Then we
can apply Lemma A.5. We obtain that Jacobian matrix J3 of the incidence
scheme has full rank. We complete the proof of this case.
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3.3 Complete intersections of (3, 3) and (4, 2) types in
P5

Proposition 3.4. There is a smooth rational curve Cg of each degree d
on a special complete intersection X3 of type (3, 3) in P5 such that J2|cg at
(cg, X3) is non-degenerate, where cg is the normalization of Cg.

Proof. Let z0, · · · , z5 be homogeneous coordinates of P5. Let P3 ⊂ P5 be
the subspace defined by z4 = z5 = 0. By [4], there exists a generic g ∈
H0(OP3(2)) such that it contains an irreducible rational curve

c = [c0, c1, c2, c3] (3.17)

of degree d. Next we define a smooth rational curve of degree d in P5 as

cg = [c0, c1, c2, c3, c1, c0]. (3.18)

We also define two cubic hypersurfaces

g1 = z0g(z0, z1, z2, z3) + (z0 − z5)α(z0, z1, z2, z3)
g2 = z0g(z5, z4, z2, z3) + (z1 − z4)α(z0, z1, z2, z3),

(3.19)

where α is a generic quadric with respect to g. Let θ1, · · · , θ6 be the affine
coordinates for 6 copies H0(OP1(d)) in Md (all variables of Md). Let

t1 = (t11, · · · , t13d+1) ∈ sym3d+1(P1)
t2 = (t21, · · · , t23d+1) ∈ sym3d+1(P1).

(3.20)

Let

Bij =
∂(gi(cg(t

i
1)), · · · , gi(cg(ti3d+1)))

∂θj
(3.21)

for i = 1, 2, j = 1, · · · , 6. Then we directly write down the Jacobian J2 of
the incidence scheme at cg.

J2 =

(
B11 B12 B13 B14 0 B16

0 B22 B23 B24 B25 B26

)
(3.22)

Similarly conditions of Lemma A.3 are met. By Lemma A.4, it has full rank.
We complete the proof in this case.
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Proposition 3.5. There is a smooth rational curve Cg of each degree d
on a special complete intersection X3 of type (4, 2) in P5 such that J2|cg at
(cg, X3) is non-degenerate, where cg is the normalization of Cg.

Proof. As in the case 1, z0, · · · , z5 are homogeneous coordinates of P5. Let
P4 be the subspace covered by the coordinates

[z0, z1, z2, z3, z4, 0].

Let P3 be the subspace covered by coordinates

[z0, z1, z2, z3, 0, 0].

By the Mori’s result [6]. there is a smooth rational curve cs of degree d on a
generic quartic g ∈ H0(OP3(4)). Let

t1 = (t11, · · · , t14d) ∈ sym4d(P1) (3.23)

be generic.
Then the Jacobian matrix J ′

J ′ =
∂
(
g(cs(t

1
1)), · · · , g(cs(t

1
4d))
)

∂(θ0, · · · , θ3)
(3.24)

has full rank. 3 Let’s extend it to P4. Define a new quartic by setting
g1 = g + z30z4 in P4 and new rational curve by setting

c = [c0, c1, c2, c3, 0]

where [c0, c1, c2, c3] is the Mori’s curve. Next we add one generic point

t14d+1 ∈ P1,

and extend the coordinates of

H0(OP1(d))⊕4

3The number of points t1j is unusual. This exceptional case holds only for quartic

surface in P3.
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to
H0(OP1(d))⊕5.

These add the a new row –the differential of dg1(c(t
1
4d+1)) to the Jacobian

J ′, Hence we obtain a new Jacobian matrix J1 in P4 at c,

J1|cg =

(
J ′ B12

B21 B22

)
(3.25)

where (
B21 B22

)
(3.26)

is the differential 1-form dg1(c(t
1
4d+1)). Hence J1|c in P4 has full rank. To

summarize it, we found a special quartic g1 in P4 containing a smooth rational
curve c of the given degree and its Jacobian matrix is of full rank. 4

Next we extend it one more time to P5. Let g1 be the extension of original
g1 to P5. Let g2 = z0z4 + z1z5 and the

cg = [c0, c1, c2, c3, 0, 0]

be the smooth curve in P5. Thus cg lies on the complete intersection of g1, g2.
We add new set of generic 2d+ 1 points in P1,

t2 = (t21, · · · , t2d+1
1 ) ∈ sym2d+1(P1). (3.27)

Then we can write down the Jacobian matrix J2 in this case. It is equal
to

J2 =

(
J1 A12

A21 A22

)
(3.28)

where (
A21 A22

)
(3.29)

is the Jacobian matrix at cg of 2d+ 1 many functions (in c),

g2(c(t
2
1)), · · · , g2(c(t22d+1)) (3.30)

and A22 is the block with respect to 2d+2 coordinates in last two components
of

H0(OP1(d))⊕6. (3.31)

By Lemma A.2, A22 has full rank. Hence the Jacobian matrix J2 also has
full rank. We complete the proof.

4We added one more feature to Mori’s existence. That is the non-degeneracy of the
Jacobian matrix.
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3.4 Quintic in P4

This has been proved in [3]. We’ll repeat the same construction in [1], but
continue with our method. By the Mori’s result [6]. there is a smooth rational
curve cs of degree d on a generic quartic div(g) in P3. Now we extend it to
P4 by setting

cg = [c0, c1, c2, c3, 0], for cs = [c0, c1, c2, c3], (3.32)

and the new quintic
g1 = lg + qz4, (3.33)

where l is a generic linear polynomial and q is a generic quartic. By [9], the
corresponding Jacobian matrix J1 has full rank.

Corollary 3.6. Let X3 be a generic complete intersection Calabi-Yau 3-fold.
Then it contains an irreducible rational curve of each degree d.

Proof. X3 is projectively embedded as one of the complete intersections in
Theorem 3.1. Therefore the corollary follows.

Remark In above arguments for the existence, all rational curves are
smooth. But non-smooth and irreducible rational curves on a generic com-
plete intersection Calabi-Yau 3-fold do exist.

4 Rigidity of rational curves

4.1 Rational curves with unobstructed deformation

In this subsection we let Y be an arbitrary smooth projective variety over
C. We’ll prove a general assertion in Theorem 4.3 about uniruled vari-
ety. For a parametrized rational curves on Y , the notion of having unob-
structed deformation is weaker than being a free morphism. Precisely let
c ∈ Hombir(P

1, Y ).
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Definition 4.1. If the normal sheaf c∗(Nc(P1)/Y ) denoted simply by Nc/Y has
the vanishing first cohomology, i.e.

H1(Nc/Y ) = 0, (4.1)

then we say c has unobstructed deformation on Y .

Since H1(Nc/Y ) = 0 is equivalent to H1(c∗(TY )) = 0, then Definition 4.1
is equivalent to the following splitting

c∗(TY ) ' ⊕jOP1(aj), aj ≥ −1. (4.2)

On the other hand, we define

Definition 4.2. If c∗(TY ) is generated by global sections, we say c is a free
morphism, and Y is uniruled.

This is a special case of the more general definition in [5].

It is clear that c being free is equivalent to the splitting

c∗(TY ) ' ⊕jOP1(aj), aj ≥ 0. (4.3)

So being free is stronger than having unobstructed deformation.

Theorem 4.3. Let L ' OPn(1)|Y be a very ample line bundle on Y , and
dim(Y ) ≥ 4. Let

X = div(f) ⊂ Y

where f ∈ H0(Lh) is generic with an h. Let

c : P1 → C ⊂ X ⊂ Y

be a birational morphism onto an irreducible rational curve C. If c is free on
Y , then c has unobstructed deformation on X, i.e.

H1(Nc/X) = 0. (4.4)
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Proof. of Theorem 4.3: By the assumption of the theorem, we have a polar-
ization of Y such that

Y ⊂ Pn (4.5)

is a smooth subvariety of dimension ≥ 4, and L = OPn(1)|Y . Let

s ∈ H0(OPn(h)) (4.6)

be generic. Let f = s|Y ∈ H0(Lh).
We denote

div(f) = X, div(s) = Z. (4.7)

By the genericity of Z, scheme-theoretically

X = Y ∩ Z. (4.8)

Let c : P1 → X be generic in Hombir(P
1, X).

We have a non-commutative diagram of exact sequences

0 0
↓ ↓

0 → H0(c∗TX) → H0(c∗TY )
µ1→ H0(c∗NX/Y )

µ2→ H1(c∗TX) → H1(c∗TY )
↓ '

0 → H0(c∗TZ) → H0(c∗(TPn))
µ3→ H0(c∗(NZ/Pn)) → H1(c∗(TZ))

↓ ‖
H0(c∗(NY/Pn))

µ4→ H0(c∗(NZ/Pn))
↓ ↓

H1(c∗(TY )) 0 .
(4.9)

Let’s define and analyze the diagram. Including all zero spaces, there are
5 rows and 6 columns. Second and third rows are parts of the long exact
sequences from the short exact sequences of sheaves over P1,

0 → c∗(TX) → c∗(TY ) → c∗(NX/Y ) → 0, (4.10)

0 → c∗(TZ) → c∗(TPn) → c∗(NZ/Pn) → 0. (4.11)

The third column is the part of the long sequence of the short exact
sequence of sheaves over P1,

0 → c∗(TY ) → c∗(TPn) → c∗(NY/Pn) → 0. (4.12)
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The isomorphism in the fourth column is from the adjuntion formula.

The homomorphism µ4 is well-defined only if c has unobstructed defor-
mation on Y . Let’s see this in the following. Because c : P1 → Y is free,
therefore c has unobstructed deformation on Y . So H1(c∗(TY )) = 0. There-
fore the third column exact sequence in (4.9) splits, i.e.

H0(c∗(TPn)) ' H0(c∗(NY/Pn))⊕H0(c∗(TY )). (4.13)

We define µ4 to be the restriction of µ3 to the subspace, H0(c∗(NY/Pn)) i.e.

µ4 : H0(c∗(NY/Pn)) → H0(c∗(NZ/Pn))
α → α|t + c∗(TZ)|t.

(4.14)

(But µ4 may not be zero.). In the sense of this splitting, the map µ3 also
splits as

µ3 = µ1 ⊕ µ4. (4.15)

Next we go further to use a construction to prove that µ4 is the zero map
due to the global generation. This is just a specification of

H0(c∗(NY/Pn))

inside of
H0(c∗(TY )).

By (4.13), there are a Zariski open set U ⊂ P1 and a trivial subbundle

E ⊂ c∗(NY/Pn)

over U such that
E ⊕ c∗(TY )|U = c∗(TPn)|U (4.16)

and
E ⊂ TZ |U . (4.17)

Let
B = {σ ∈ H0(c∗(TPn)) : σ|U ∈ E}. (4.18)

So B is a subspace of H0(c∗(TPn)). It generates a sheaf EP1 over P1 (in
general B could be zero, so did EP1 .). Because

c∗(TY ), c∗(TPn)
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are generated by global section, the sheaf EP1 over P1 satisfies

B ' H0(c∗(NY/Pn)). (4.19)

and (4.17) extends to
EP1 ⊂ TZ . (4.20)

We then define µ4 to be the restriction of µ3 to B (this is the same as
the definition before. But this time, the subspace H0(c∗(NY/Pn)) is uniquely
identified.). By the condition (4.20), µ4 is the zero map.

Thus
Image(µ1) = Image(µ3). (4.21)

Now we consider the third row, an exact sequence in (4.9). Since Z is a
generic hypersurface of Pn, we can apply Theorem 1.1, [8] (or [7]) to obtain
that H1(c∗(TZ)) = 0. The exactness of the sequence implies that µ3 is
surjective. So is µ1. Next we shift the focus to the second row in (4.9). We
apply H1(c∗(TY )) = 0 again to obtain that H1(c∗(TX)) = 0. Using the exact
sequence

0 → TP1 → c∗(TX) → Nc/X → 0. (4.22)

we obtain that
H1(c∗(TX)) = H1(Nc/X) = 0. (4.23)

4.2 Free morphism

In this subsection, we continue the existence result — the existence of irre-
ducible rational curves of each degree d on a generic complete intersection
Calabi-Yau 3-folds. From now on we change Y to be a complete intersection
as follows,

Y = ∩r−1i=1div(gi) (4.24)

for the fixed set of generic gi. So Y , which is equal to X4, is a smooth 4-
dimensional complete intersection and Fano. As before for the fixed set of
gi,

X3 = ∩ri=1div(gi) (4.25)
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is a Calabi-Yau 3-fold contained in the Fano 4-fold Y = X4.

We would like to show a generic rational curve c on X3 is free on Y , in
another word, such rational curves cover Y . Thus we assume

Assumption 4.4. c0 ∈ Hombir(P
1, X3) of deg(c0(P

1)) = d exists.

We’ll work in a neighborhood of each component of the incidence schemes
around c0.

Let’s resume all the notations in section 2. We let g1, · · · , gr−1 be fixed
(where r = n − 3). Then the incidence scheme Ir−1 is also fixed. Let Ir−1
be a component of Ir−1 containing c0. Let Γ be an irreducible component of
the scheme

{(c, gr) ∈ Ir−1 ×H0(OPn(hr)) : c∗(gr) = 0} (4.26)

containing c0. Let

π : Ir−1 ×H0(OPn(hr)) → Md (4.27)

be the projection. Let I = π(Γ). So

I ⊂ Ir−1.

Let 0 ∈ P1 be a generic point. Let R be the closure of the open scheme,

R̊ = {(c, y) ∈ P(I)× Y : y = c(0)}. (4.28)

The equation y = c(0) means that c is regular at 0.

We would like to show that

Proposition 4.5. The open scheme R̊ is a rational map from P(I) to Y
and dominates Y .

Proof. Let l be an integer satisfying

0 ≤ l ≤ r. (4.29)
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Let Il be a component of Il containing c0. Define

Rl ⊂ P(Il)×Xn−l (4.30)

to be the closure of
R̊l = {(c, x) : c(0) = x}. (4.31)

for each l.
First we consider the case l < r − 1. Suppose Rl is onto Xn−l, where

dim(Xn−l) = n − l. Let x ∈ Xn−l have coordinates [0, · · · , 0, 1]. Then the
dimension of the fibre (Rl)x of Rl over the generic point x ∈ Xn−l satisfies

dim((Rl)x) ≥ (hl+1 + · · ·+ hr)d. (4.32)

Hence after imposing hl+1d+ 1 equations,

gl+1(c(t
l+1
1 )) = · · · = gl+1(c(t

l+1
hl+1d+1) = 0,

we obtain that

dim((Rl+1)x) ≥ (hl+2 + · · ·+ hr)d− 1 ≥ 0. (4.33)

for all x ∈ Xn−l−1. Let
Proj : P(Il)→ Pn

be the projection. Then the correspondence Rl+1 sends Proj(Rl+1) onto
Xn−l−1 (not a map). Next we show Rl+1 is a rational map.

Applying Assumption 4.4, there is a

c0 ∈ Proj(Rl+1) ∩Mbir,d.

Then generic c ∈ Proj(Rl+1) must be in Mbir,d because Mbir,d is an open set.
Hence the correspondence Rl+1 is a rational map. By the induction on the
index l for

l = 0⇒ l = r − 2,

we showed that the irreducible component

R̊r−1

dominates Y , through the rational evaluation map

c→ c(0).

21



To prove Proposition 4.5 it suffices to extend above proof to l = r, but
the situation is slightly different.

Let
tr = (tr1, · · · , trhrd+1) ∈ symhrd+1(P1) (4.34)

be generic. By the result of above argument, R̊r−1 dominates Y . So for a
generic y ∈ Y ,

dim((Rr−1)y) ≥ hrd. (4.35)

For the fixed y, we define Sy to be closure of

S̊y ⊂ Ir−1 × ˚H0(OPn(hr))

S̊y = {(c, gr) : c ∈ Ir−1, gr(c(tr1)) = · · · = gr(c(t
r
hrd+1)) = 0}

(4.36)

where ˚H0(OPn(hr)) is an open set of space of hypersurface gr satisfying that
the Jacobian matrix of the functions in c

gr(c(t
r
1)), · · · , gr(c(trhrd+1))

at c ∈ Ir−1 has full rank. By the inequality (4.35), we count the dimension
to obtain the Sy is non-empty. Hence

π(Sy) (4.37)

is non-empty for generic y. This shows that the correspondence R is onto Y .
Now let’s show it is a rational map. Notice a generic c ∈ π(Sy) is a generic
element in

∪y∈Y π(S) = I. (4.38)

Hence it suffices to show there is one regular point for R. By Assumption
4.4, there is a c0 ∈ Sy such that c0 is in Mbir,d, and c0(0) = y for some y ∈ Y
(not all y). Therefore R is regular at ONE point. With the same reason
as above, R is a rational map. Thus R̊ dominates Y . This completes the
proof.

Corollary 4.6. Let (c, y) ∈ R be generic. Then c is a free morphism on Y .
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Proof. By Proposition 4.5, there is a Zariski open set U of R, such that the
projection

Proj : U → Proj(U) ⊂ Y

is smooth. Hence its differential is onto. Let (c, y) ∈ U . Then the pull-back
of the tangent bundle

c∗(TY ) ' ⊕kOP1(k) (4.39)

does not have negative summand, i.e. k ≥ 0. Hence a c gives a free morphism
P1 → Y .

4.3 Unobstructed deformation

Notice that there is a degree d rational curve c ∈ Hombir(P
1, X3) for a generic

X3. By corollary 4.6, it is a free morphism in Y , we apply Theorem 4.3. Then
the second row of (4.9) implies a recursive formula

dim(H0(c∗(Xl+1))) = dim(H0(c∗(Xl)))− hld− 1. (4.40)

Since
dim(H0(c∗(X0))) = (n+ 1)d+ n,

dim(H0(c∗(X3))) = (n+ 1)d+ n−
r∑

k=1

hkd− (n− 3) = 3. (4.41)

Now we consider it from a different point of view. Because c is a birational
map to its image, there are finitely many points ti ∈ P1 where the differential
map

c∗ : TtiP
1 → Tc(ti)Y

is a zero map. Assume its vanishing order at ti is mi . Let

m =
∑
i

mi. (4.42)

Let s(t) ∈ H0(OP1(m)) such that

div(s(t)) = Σimiti.
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The sheaf morphism c∗ is injective and induces a composed morphism ξs
of sheaves

TP1
c∗→ c∗(TX3)

1
s(t)→ c∗(TX3)⊗OP1(−m). (4.43)

It is easy to see that the induced bundle morphism ξs is injective. Let

Nm =
c∗(TX3)⊗OP1(−m)

ξs(TP1)
. (4.44)

Then
dim(H0(Nm)) = dim(H0(c∗(TX3)⊗OP1(−m)))− 3. (4.45)

On the other hand, three dimensional automorphism group of P1 gives a rise
to a 3-dimensional subspace K of

H0(c∗(TX3)).

By (4.41), K = H0(c∗(TX3)). Over each point t ∈ P1, K spans a one
dimensional subspace. Hence

c∗(TX3) ' OP1(2)⊕OP1(−k1)⊕OP1(−k2), (4.46)

where k1, k2 are some positive integers. This implies that

dim

(
H0(c∗TX3 ⊗OP1(−m))

)
= dim(H0(OP1(2−m)). (4.47)

Then

dim

(
H0(c∗TX3 ⊗OP1(−m))

)
= 3−m. (4.48)

Since dim(H0(Nm)) ≥ 0, by the formula (4.45), −m ≥ 0. By the defini-
tion of m, m = 0. Hence c is an immersion.

Now Nc/X3 is a vector bundle. By the the Calabi-Yau condition,

Nc/X3 ' OP1(k)⊕OP1(−2− k) (4.49)

where k is non-positive. By Theorem 4.3, H1(Nc/X3) = 0. Hence k = −1.
Since X3 is generic, the same proof is valid for all c ∈ Hombir(P

1, X3).
Together with the existence in section 3, we complete the proof of Theorem
1.1.
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A Vandermonde type of matrices

In the appendix, we give proofs of lemmas dealing with Vandermonde type of
matrices that are products of diagonal matrices and Vandermonde matrices.
The main purpose is to use rather elementary technique to glue matrices of
smaller sizes, the Vandermonde type of matrices, to obtain a matrix of larger
size (which is a Jacobian matrix of a complete intersection). We assume that
the linear algebra has the ground field C.

First we introduce and study Vandermonde type of matrices, that are
smaller matrices as entries in the large block matrices. Let

h ∈ H0(OP1(v)) (A.1)

be a polynomial, where t ∈ P1 is the variable, and Let

t = (t1, · · · , tu) ∈ Symu(P1).

In the following in order to define matrices, we use the affine expression in
subsection 2.1. Let Du be a diagonal matrix

Du =


h(t1) 0 · · · 0

0 h(t2) · · · 0
... · · · . . .

...
0 · · · 0 h(tu)

 (A.2)

Definition A.1.

V0(h, t,m) = Du

 tm1 · · · t1
... · · · ...
tmu · · · tu

 . (A.3)

and

V1(h, t,m) = Du

 tm1 · · · 1
... · · · ...
tmu · · · 1

 (A.4)

We call them Vandermonde type of matrices of orders 0 and 1 respectively.
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Remark The Jacobian matrices Jl of incidence schemes (we are interested
in ) are all made of Vandermonde type of matrices.

Lemma A.2. If h1, h2 are two relatively prime polynomials with distinct
zeros, and degrees ≥ d, then for generic

(t1, t2) ∈ Symd(P1)× Symd+1(P1)

the square matrix

B =

(
V0(h1, t1, d) V1(h2, t1, d)
V1(h1, t2, d) V0(h2, t2, d)

)
(A.5)

is non-degenerate.

Proof. It suffices to prove it for a special ti. Since h1 has degree ≥ d and it
is relatively prime to h2, we can choose t11, · · · , t1d to be the zeros of h1(t) and
h2(t) is non-zero at all points of t1, t2. Then

B =

(
0 V1(h2, t1, d)

V1(h1, t2, d) V0(h2, t2, d)

)
(A.6)

Then its determinant is

−|V1(h2, t1)||V1(h1, t2)|. (A.7)

Since V1(h2, t1),V1(h1, t2) are types of Vandermonde matrices, the distinct
tij and nonvanishing h1, h2 imply the non-degeneracy. Therefore B is non-
degenerate.

Lemma A.3. Let h3 ∈ H0(OP1(2d)) and h1, h2 ∈ H0(OP1(d)) be two vectors
not on the same line through the origin. They are also pair wisely relatively
prime, and all zeros are distinct. Let

(t1, t2, t3) ∈ symd(P1)× symd(P1)× symd+1(P1)
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be generic. Then the square matrix ( (3d+ 1)× (3d+ 1)),

B =

 V0(h1, t1, d) V0(h2, t1, d) V1(h3, t1, d)
V0(h1, t2, d) V0(h2, t2, d) V1(h3, t2, d)
V0(h1, t3, d) V0(h2, t3, d) V1(h3, t3, d)

 (A.8)

is non-degenerate.

Proof. By the linear algebra in Proposition 2.10, [7], we obtain that the
matrix V ,

V =

(
V0(h1, t1, d) V0(h2, t1, d)
V0(h1, t2, d) V0(h2, t2, d)

)
(A.9)

has full rank for any (t1, t2) with 2d distinct points in P1.
Then we rewrite B as a block matrix,

B =

(
V A
D V1(h3, t3, d)

)
(A.10)

where
D =

(
V0(h1, t3, d) V0(h2, t3, d)

)
(A.11)

and

A =

(
V1(h3, t1, d)
V1(h3, t2, d)

)
. (A.12)

Then for generic t1, t2, t3, B is column-equivalent to(
V 0
D −DV−1A+ V1(h3, t3, d)

)
. (A.13)

By choosing the points of t1, t2 to be the zeros of h3 and V remains invertible,
we obtain that

A = 0.

Thus we have a specialization

−DV−1A+ V1(h3, t3, d) = V1(h3, t3, d)

which is non-degenerate. Thus for generic t1, t2, t3,

−DV−1A+ V1(h3, t3, d)

is non-degenerate, so is B.
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We’ll use two different types matrices B in Lemmas A. 2, A.3 as building
blocks to obtain matrices of larger sizes. We’ll show that non-degeneracy of
large matrices is the result of that of the smaller, block matrices.

Lemma A.4. Let Bij, i = 1, 2, j = 1, · · · , 6 be (3d + 1) × (d + 1) matrices.
Assume

(1) (
B13 B14

)
=
(
B23 B24

)
(A.14)

(2) (
B13 B14 B16

)
(A.15)

and (
B11 B12 −B22 B25

)
(A.16)

have full rank,
(3) the columns of (

B13 B14

)
(A.17)

span the columns of (
B11 B12

)
(A.18)

Then

J =

(
B11 B12 B13 B14 0 B16

0 B22 B23 B24 B25 B26

)
(A.19)

is non-degenerate.

Proof. In the following, we apply the column and row operations to the
matrix. They will not change its rank. Applying the row operations on the
matrix J we obtain it is row-equivalent to

J =

(
B11 B12 B13 B14 0 B16

−B11 B22 −B12 0 0 B25 B26 −B16

)
(A.20)

By the condition (3), it is column-equivalent to

J =

(
0 0 B13 B14 0 B16

−B11 B22 −B12 0 0 B25 B26 −B16

)
(A.21)
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By the condition (2), it is further column equivalent to

J =

(
0 0 B13 B14 0 B16

−B11 B22 −B12 0 0 B25 0

)
(A.22)

By the condition (2), we obtain it has full rank.

Lemma A.5. Consider the block matrix

J =

 B11 B12 B13 B14 B15 0 0
0 0 B23 B24 B25 B26 0
0 0 0 B34 B35 B36 B37

 (A.23)

where the entries in first row are (3d+ 1)× (d+ 1) matrices and all the rest
are (2d+ 1)× (d+ 1) matrices. We assume

(1) (
B24 B25 B26

)
=
(
B34 B35 B36

)
. (A.24)

(2) (
B11 B12 B15

)
(A.25)

, (
B23 −B37

)
(A.26)

and (
B34 B36

)
(A.27)

have full rank,
(3) the columns of (

B11 B12

)
(A.28)

span the columns of (
B13 B14

)
, (A.29)

then the matrix J has full rank.
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Proof. The proof uses row and column operations which are the same as
those in Lemma A.4. So in the following we just list the equivalent matrices
in the reduction.

J =

 B11 B12 B13 B14 B15 0 0
0 0 B23 B24 B25 B26 0
0 0 0 B34 B35 B36 B37

 (A.30)

⇓row operations B11 B12 B13 B14 B15 0 0
0 0 B23 0 0 0 −B37

0 0 0 B34 B35 B36 B37

 (A.31)

⇓ column operations

J =

 B11 B12 0 0 B15 0 0
0 0 B23 0 0 0 −B37

0 0 0 B34 B35 B36 B37

 (A.32)

⇓ column operations

J =

 B11 B12 0 0 B15 0 0
0 0 B23 0 0 0 −B37

0 0 0 B34 0 B36 0

 . (A.33)

The last matrix has full rank.

Lemma A.6. Consider the block matrix

J =


B11 B12 0 0
0 B22 B23 0
0 0 B33 B34

0 B42 0 B44

 , (A.34)

where Bij are non degenerate square matrices of the same size. If(
−B22B

−1
23 B33 B34

B42 B44

)
(A.35)

is non-degenerate, so is J .
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Proof. As before we perform row and column operations on J to obtain
B11 0 0 0
0 B22 B23 0
0 0 B33 B34

0 B42 0 B44

 (A.36)

⇓
B11 0 0 0
0 0 B23 0
0 −B22B

−1
23 B33 B33 B34

0 B42 0 B44

 (A.37)

⇓
B11 0 0 0
0 0 B23 0
0 −B22B

−1
23 B33 0 B34

0 B42 0 B44

 (A.38)

By the assumption, (
−B22B

−1
23 B33 B34

B42 B44

)
(A.39)

is non-degenerate, so is J .
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